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Abstract

As part of the continuous development of the space-time conservation element and solution element
(CE-SE) method, recently a set of so called “Courant number insensitive schemes” has been proposed. The
key advantage of these new schemes is that the numerical dissipation associated with them generally does
not increase as the Courant number decreases. As such, they can be applied to problems with large Courant
number disparities (such as what commonly occurs in Navier-Stokes problems) without incurring excessive
numerical dissipation.

A basic scheme in the development of the Courant number insensitive schemes is the so called “c-τ
scheme”. It is a solver of the PDE

∂u

∂t
+ a

∂u

∂x
= 0

where a �= 0 is a constant. At each space-time staggered mesh points (j, n), the c-τ scheme is formed by

un
j =

1
2

{
(1 + ν)un−1/2

j−1/2 + (1 − ν)un−1/2
j+1/2 + (1 − ν2)

[
(ux̄)n−1/2

j−1/2 − (ux̄)n−1/2
j+1/2

]}

and
(ux̄)n

j =
1

2(1 + τ)

[
u

n−1/2
j+1/2 − (1 + 2ν − τ)(ux̄)n−1/2

j+1/2 − u
n−1/2
j−1/2 − (1 − 2ν − τ)(ux̄)n−1/2

j−1/2

]

Here: (i) un
j and (ux̄)n

j , respectively, denote the numerical analogues of u and (∆x/4)∂u/∂x at the mesh

point (j, n); (ii) ν def= a∆t/∆x is the Courant number; and (iii) τ is an adjustable parameter �= −1.
Because the c-τ scheme is formed by two rather complicated equations involving two parameters ν and

τ , it were not expected that its von Neumann stability conditions could be cast into an explicit analytical
form. Against this expectation, it will be shown rigorously in this paper that, based on the von Neumann
analysis, the c-τ scheme is stable if and only if

ν2 ≤ 1, τ ≥ τo(ν2), and (ν2, τ) �= (1, 1)

where

τo(x)
def=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x = 0

4 − x− 2
√

2(2 − x− x2)
x

if 0 < x ≤ 3/11

x− 1 +
√

1 − 2x+ 5x2

2x
if 3/11 ≤ x ≤ 1

Note that the current stability conditions are in complete agreement with those generated numerically and
reported earlier.

In addition, it will be shown that: (i) τo(x) is continuous at x = 0; (ii) τo(x) is consistently defined at
x = 3/11; (iii)

lim
x→ 3

11
−
τ ′o(x) = lim

x→ 3
11

+
τ ′o(x) = 121/90

where τ ′o(x)
def= dτo(x)/dx; (iv) τo(x) is strictly montonically increasing in the interval 0 < x < 1; and (v)

x < τo(x) <
√
x, 0 < x < 1
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1. Introduction

As part of the continuous development of the space-time conservation element and
solution element (CE-SE) method [1–11], recently a set of so called “Courant number
insensitive schemes” has been reported in [9–11]. The key advantage of these new schemes
is that the numerical dissipation associated with them generally does not increase as the
Courant number decreases. As such, they can be applied to problems with large Courant
number disparities (such as what commonly occurs in Navier-Stokes problems) without
incurring excessive numerical dissipation.

A basic scheme in the development of the Courant number insensitive schemes is the
so called “c-τ scheme” [11]. It is a solver of the PDE

∂u

∂t
+ a

∂u

∂x
= 0 (1.1)

where a �= 0 is a constant. Consider Fig. 1 and let Ω denote the set of all space-time
staggered mesh points (dots in Fig. 1), where n = 0,±1/2,±1,±3/2,±2, . . ., and, for each
n, j = n± 1/2, n± 3/2, n± 5/2, . . .. Then, at each (j, n) ∈ Ω, the c-τ scheme is formed by

un
j =

1
2

{
(1 + ν)un−1/2

j−1/2 + (1 − ν)un−1/2
j+1/2 + (1 − ν2)

[
(ux̄)n−1/2

j−1/2 − (ux̄)n−1/2
j+1/2

]}
(1.2)

and

(ux̄)n
j =

1
2(1 + τ)

[
u

n−1/2
j+1/2 − (1 + 2ν − τ)(ux̄)n−1/2

j+1/2 − u
n−1/2
j−1/2 − (1 − 2ν − τ)(ux̄)n−1/2

j−1/2

]

(1.3)
Here: (i) un

j and (ux̄)n
j , respectively, denote the numerical analogues of u and (∆x/4)∂u/∂x

at the mesh point (j, n); (ii)

ν
def=

a∆t

∆x
(1.4)

is the Courant number; and (iii) τ is an adjustable parameter �= −1. It is shown in [12]
that Eqs. (1.2) and (1.3) are consistent with a pair of PDEs with Eq. (1.1) being one of
them.

Because the c-τ scheme is formed by two rather complicated equations involving two
parameters ν and τ , it was not expected that its von Neumann stability conditions could
be cast into an explicit analytical form. But to the contrary, it will be shown rigorously in
this paper that, based on the von Neumann analysis, the c-τ scheme is stable if and only
if

ν2 ≤ 1, τ ≥ τo(ν2), and (ν2, τ) �= (1, 1) (1.5)

where

τo(x)
def=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x = 0

4 − x− 2
√

2(2 − x− x2)
x

if 0 < x ≤ 3/11

x− 1 +
√

1 − 2x+ 5x2

2x
if 3/11 ≤ x ≤ 1

(1.6)
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Figure 1.—A space-time mesh.
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Note that the current stability conditions are in complete agreement with those generated
numerically and reported earlier in [11].

In addition, it will be shown that: (i) τo(x) is continuous at x = 0; (ii) τo(x) is
consistently defined at x = 3/11; (iii)

lim
x→ 3

11
−
τ ′o(x) = lim

x→ 3
11

+
τ ′o(x) = 121/90 (1.7)

where τ ′o(x)
def= dτo(x)/dx; (iv) τo(x) is strictly monotonically increasing in the interval

0 < x < 1; and (v)
x < τo(x) <

√
x, 0 < x < 1 (1.8)

Eqs. (1.5) and (1.8) coupled with the facts that τo(0) = 0 and
√
ν2 = |ν| imply that

the c-τ scheme is stable if
τ = |ν| < 1 (1.9)

On the other hand, Eqs. (1.5) and (1.8) imply that the c-τ scheme is unstable for the cases
(i)

ν2 > 1 (1.10)

and (ii)
τ = ν2 and 0 < ν2 < 1 (1.11)

Note that, for a reason explained in [9,11], the special c-τ scheme with Eq. (1.9) is a
Courant number insensitive solver for Eq. (1.1).

The rest of the paper is outlined as follows. For any pair of ν and τ , and any phase
angle θ, the amplification matrix Q(ν, τ, θ) that arises from the von Neumann stability
analysis is presented in Sec. 2 (see Eq. (2.8)). The definition of stability (Definition 1)
is then given in the same section in terms of the behaviors of [Q(ν, τ, θ)]m, −π < θ ≤ π,
as the integer m → +∞. In Sec. 3, Theorems 1 and 2 are introduced to link stability
with the spectal radii ρ(Q(ν, τ, θ)) of Q(ν, τ, θ), −π < θ ≤ π. Based on the preliminaries
given in Secs. 2 and 3, the main results are given in Sec. 4. Specifically, Sec. 4 begins
with Theorem 3, in which the necessary and sufficient stability conditions are expressed
implicitly in terms of a requirement on ρ(Q(ν, τ, θ)), −π < θ ≤ π. It is then followed
by a systematic and rigorous effort to obtain the explicit solution to the above implicit
conditions. Finally, conclusions and discussions are presented in Sec. 5. Moreover, to give
the reader extra confidence on the main results established analytically in Theorems 34 and
35, these theorems are further validated numerically in Appendices A and B, respectively.
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2. von Neumann Stability Analysis

For any (j, n) ∈ Ω, let

�q (j, n) def=

⎛
⎝

un
j

(ux̄)n
j

⎞
⎠ (2.1)

Q+(ν, τ) def=
1
2

⎛
⎜⎝

1 + ν 1 − ν2

−1
1 + τ

−1 − 2ν − τ

1 + τ

⎞
⎟⎠ (2.2)

and

Q−(ν, τ) def=
1
2

⎛
⎜⎝

1 − ν −(1 − ν2)

1
1 + τ

−1 + 2ν − τ

1 + τ

⎞
⎟⎠ (2.3)

where
1 + τ �= 0 (2.4)

is assumed. Then Eqs. (1.2) and (1.3) can be expreseed as

�q (j, n) = Q+�q (j − 1/2, n− 1/2) +Q−�q (j + 1/2, n− 1/2) (2.5)

Hereafter Q+(ν, τ) and Q−(ν, τ) may be abbreviated as Q+ and Q−, respectively.
To study the stability of the c-τ scheme using the von Neumann analysis [1], for all

(j, n) ∈ Ω, let
�q (j, n) = �q ∗(n, θ)ei j θ (2.6)

Here (i) i def=
√−1, (ii) θ, −∞ < θ < +∞, is the phase angle variation per ∆x, and (iii)

�q ∗(n, θ) is a 2×1 column matrix. Substituting Eq. (2.6) into Eq. (2.5) and using Eq. (2.4),
one has

�q ∗(n+ 1/2, θ) = Q(ν, τ, θ)�q ∗(n, θ) (2.7)

where n = 0,±1/2,±1,±3/2, . . ., and

Q(ν, τ, θ) def= e−iθ/2Q+(ν, τ) + eiθ/2Q−(ν, τ)

=

⎛
⎜⎝

cos(θ/2) − iν sin(θ/2) −i(1 − ν2) sin(θ/2)

i sin(θ/2)
1 + τ

−
[
(1 − τ) cos(θ/2) + 2iν sin(θ/2)

1 + τ

]
⎞
⎟⎠

(2.8)

Because of Eq. (2.7), Q(ν, τ, θ) is referred to as the amplification matrix of the c-τ scheme
per marching step (or per ∆t/2). Also, by using Eq. (2.7), one has

�q ∗(n+m/2, θ) = [Q(ν, τ, θ)]m�q ∗(n, θ) (2.9)
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where m = 1, 2, 3, . . . and n = 0,±1/2,±1,±3/2, . . ..
As a result of Eq. (2.9), we have Definition 1.

Definition 1. The c-τ scheme is said to be stable with respect to a given ordered pair
(ν, τ) if, for every θ, −∞ < θ < +∞, all elements of the matrix [Q(ν, τ, θ)]m associated
with this pair remain bounded as the positive integer m → +∞. On the other hand, the
scheme is said to be unstable with respect to a given (ν, τ) if, for any θ, −∞ < θ < +∞, at
least one element of the matrix [Q(ν, τ, θ)]m associated with this (ν, τ) becomes unbounded
as m→ +∞. Hereafter, a given (ν, τ) is said to be c-τ stable (unstable) if the c-τ scheme
is stable (unstable) with respect to this (ν, τ).

Note that: (i) Eq. (2.8) implies that, for any integer �,

Q(ν, τ, θ+ 2�π) = (−1)�Q(ν, τ, θ) (2.10)

and (ii) for any θ, −∞ < θ < +∞, there are a θ′, −π < θ′ ≤ π and an integer � such
that θ = θ′ + 2�π. As such, Definitions 1 is equivalent to the simplified form in which the
original range of θ, i.e., −∞ < θ < +∞, is replaced by

−π < θ ≤ π (2.11)

Hereafter, the simplified form of Definition 1 is assumed.
Given Definition 1, it will be shown in this paper that a given (ν, τ) is c-τ stable if and

only if it satisfies Eq. (1.5). As a first step, in Sec. 3 we will answer the following question:
For any given ordered set (ν, τ, θ), what are the requirements the matrix Q(ν, τ, θ) must
meet so that all elements of the matrix [Q(ν, τ, θ)]m will remain bounded as m→ +∞?

NASA/TM—2005-213556 6



3. Two Matrix Theorems

Let M be any N × N matrix with real or complex elements. By definition, the
eigenspace of M is the vector space spanned by its eigenvectors. Let the dimension of this
eigenspace be denoted by N ′. Then 1 ≤ N ′ ≤ N . The matrix is said to be (i) nondefective
if N ′ = N and (ii) defective if N ′ < N [13].

Hereafter let N = 2. Then the eigenvalues λ1 and λ2 of the matrix M are the two
roots of a quadratic characteristic equation. Moreover, we have Theorem 1.

Theorem 1. The matrix M is defective if and only if (i) λ1 = λ2, and (ii) M �= λcI,
where I is the 2 × 2 identity matrix and λc is the common value of λ1 and λ2.

Proof . Let �b1 and �b2 be two nonnull 2 × 1 column matrices with

M�b� = λ�
�b�, � = 1, 2 (3.1)

Then, for each �, �b� is an eigenvector of M with the eigenvalue λ�. In case that λ1 �= λ2, it
is known that �b1 and �b2 are linearly independent [13]. Thus N ′ = 2 and M is nondefective.

Next let λ1 = λ2 and M be nondefective. Then N ′ = 2, i.e., there exist two linearly
independent 2 × 1 column matrices �b1 and �b2 that satisfy Eq. (3.1). Let

�b� =

⎛
⎝
b1�

b2�

⎞
⎠ , � = 1, 2 (3.2)

and

B
def=

⎛
⎝
b11 b12

b21 b22

⎞
⎠ (3.3)

Then, because λ1 = λ2, Eq. (3.1) can be expressed as

(M − λcI)B = 0 (3.4)

where λc is the common value of λ1 and λ2. Because �b1 and �b2 are linearly independent, B
is nonsingular [13]. Thus, B−1, the inverse of B, must exist. Multiplying the expressions on
the two sides of Eq. (3.4) from the right with B−1 leads to the conclusion that M−λcI = 0,
i.e., M = λcI.

Conversely let M = λcI where λc is any scalar. Then it can be shown easily that
(i) λ1 = λ2 = λc, and (ii) any 2 × 1 nonnull column matrix is an eigenvector of M . The
conclusion (ii) implies that N ′ = 2 and thus M is nondefective.

It has been shown that: (i) M is nondefective if λ1 �= λ2; and (ii) in case that λ1 = λ2,
M is nondefective if and only if M = λcI (i.e., M is defective if and only if M �= λcI)
where λc is the common value of λ1 and λ2. Thus the proof is completed. QED.
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Next let (i) m be an integer > 0; and (ii) ρ(M) be the spectral radius of M , i.e.,

ρ(M) def= max{|λ1|, |λ2|} (3.5)

Then we have Theorem 2.

Theorem 2. Every element of Mm will remain bounded as m→ +∞ if and only if

ρ(M)

{≤ 1 if M is nondefective

< 1 if M is defective
(3.6)

Proof . According to the Jordan canonical form theorem [13], there exists a nonsin-
gular 2 × 2 matrix S such that

M = SΛS−1 (3.7)

Here (i) S−1 is the inverse of S; (ii)

Λ def=

⎛
⎝
λ1 0

0 λ2

⎞
⎠ if M is nondefective (3.8)

and (iii)

Λ def=

⎛
⎝
λc 1

0 λc

⎞
⎠ if M is defective (3.9)

Note that λc in Eq. (3.9) is the common value of λ1 and λ2 in the defective case.
By using Eqs. (3.8) and (3.9), one has: (i)

Λm =

⎛
⎝
λm

1 0

0 λm
2

⎞
⎠ if M is nondefective (3.10)

and (ii)

Λm =

⎛
⎝
λm

c mλm−1
c

0 λm
c

⎞
⎠ if M is defective (3.11)

Because (i) Eq. (3.7) implies that

Mm = SΛmS−1 (3.12)

and (ii) Eq. (3.12) is equivalent to

Λm = S−1MmS (3.13)
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one can infer from Eq. (3.10) that, for the nondefective case, every element of Mm will
remain bounded as m→ +∞ if and only if

ρ(M) ≤ 1 (the nondefective case) (3.14)

On the other hand, for the defective case, by using (i) ρ(M) = |λc|, and (ii)

lim
m→+∞ |mλm−1

c | =

⎧⎨
⎩

0 if |λc| < 1

+∞ if |λc| ≥ 1
(3.15)

Eqs. (3.11)–(3.13) imply that, for the defective case, every element of Mm will remain
bounded as M → +∞ if and only if

ρ(M) < 1 (the defective case) (3.16)

Because Eq. (3.6) is the combined form of Eqs. (3.14) and (3.16), the proof is completed.
QED.

At this juncture, note that the term |mλm−1
c | grows linearly with m as m → +∞ if

|λc| = 1. Thus, for the defective case with |λc| = 1, the growth rate of the magnitude of
any element of Mm as m → +∞ is very low compared with the exponential growth rate
associated with a nondefective or defective case with ρ(M) > 1. The implication of this
observation will be addressed later.

NASA/TM—2005-213556 9



4. Main Results

An immediate result of Definition 1 and Theorem 2 is Theorem 3.

Theorem 3. A given (ν, τ) is c-τ stable if and only if the condition

ρ(Q(ν, τ, θ))

⎧⎨
⎩

≤ 1 if Q(ν, τ, θ) is nondefective

< 1 if Q(ν, τ, θ) is defective
(4.1)

associated with the given (ν, τ) is met for all θ, −π < θ ≤ π.

Two immediate results of Theorem 3 are Theorems 4 and 5.

Theorem 4. A necessary condition for any given (ν, τ) to be c-τ stable is

ρ(Q(ν, τ, θ)) ≤ 1, −π < θ ≤ π (4.2)

Theorem 5. In case that
ρ(Q(ν, τ, θ)) �= 1 (4.3)

for all defective Q(ν, τ, θ) (−π < θ ≤ π) associated with a given (ν, τ), Eq. (4.2) is also a
sufficient condition for this (ν, τ) to be c-τ stable.

From Theorem 3, it becomes clear that a thorough stability study of the c-τ scheme
requires a systematic investigation of the matrix Q(ν, τ, θ) and its eigenvalues over the
entire range of ν, τ , and θ. In the following, first we shall try to narrow down the possible
(ν, τ) that are c-τ stable by ruling out those that fail to satisfy Eq. (4.2).

Let det(M) denote the determinant of any square matrix M . Then any eigenvalue λ
of Q(ν, τ, θ) satisfies the characteristic equation det (Q(ν, τ, θ)− λI) = 0, i.e.,

(1 + τ)λ2 − [2τ cos(θ/2) − iν(3 + τ) sin(θ/2)]λ

− (1 − τ) cos2(θ/2)− (1 + ν2) sin2(θ/2) − iν(1 + τ) sin(θ/2) cos(θ/2) = 0
(4.4)

Let
X(ν, τ, θ) def= 4 cos2(θ/2) +

[
4(1 + τ) − ν2(τ2 + 2τ + 5)

]
sin2(θ/2) (4.5)

and
Y (ν, τ, θ) def= 4ν(1 − τ) sin(θ/2) cos(θ/2) (4.6)

Then, with the aid of Eq. (2.4), Eq. (4.4) implies that λ = λ+(ν, τ, θ) or λ = λ−(ν, τ, θ)
where

λ±(ν, τ, θ) def=
2τ cos(θ/2) − iν(3 + τ) sin(θ/2) ±√

X + iY

2(1 + τ)
, 1 + τ �= 0 (4.7)
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Hereafter X(ν, τ, θ) and Y (ν, τ, θ) may be abbreviated as X and Y , respectively. Because
the range of the phase angle φ in the polar form of the principal square root

√
X + iY is

−π/2 < φ ≤ π/2, it can be shown that

√
X + iY =

1√
2

[√√
X2 + Y 2 +X + i sign(Y )

√√
X2 + Y 2 −X

]
(4.8)

where

sign(Y ) def=

{ 1 if Y ≥ 0

−1 if Y < 0
(4.9)

With the aid of Eq. (4.8), Eq. (4.7) implies that

λ±(ν, τ, θ) =
1

2(1 + τ)

{
2τ cos(θ/2)± 1√

2

√√
X2 + Y 2 +X

− i

[
ν(3 + τ) sin(θ/2) ∓ 1√

2
sign(Y )

√√
X2 + Y 2 −X

]} (1 + τ �= 0) (4.10)

Next Eq (4.10) is used to yield

2(1 + τ)2(|λ+|2 + |λ−|2) = 4τ2 cos2(θ/2) + ν2(3 + τ)2 sin2(θ/2) +
√
X2 + Y 2 (4.11)

and
(1 + τ)2|λ+|2|λ−|2 = (1 − τ)2 cos4(θ/2) + (1 + ν2)2 sin4(θ/2)

+ (2 − 2τ + 3ν2 + τ2ν2) sin2(θ/2) cos2(θ/2)
(4.12)

For simplicity, hereafter λ+(ν, τ, θ) and λ−(ν, τ, θ) may be abbreviated as λ+ and λ−,
respectively. Next, let

s
def= sin2(θ/2), −π < θ ≤ π (4.13)

Then
cos2(θ/2) = 1 − s (4.14)

and, corresponding to the domain −π < θ ≤ π, the range of s is

0 ≤ s ≤ 1 (4.15)

Next, let

D(ν, τ, s) def= 2(1 − ν2)(τ2 − ν2)s2 +
[
4τ + (τ2 − 6τ − 3)ν2

]
s+ 4, 0 ≤ s ≤ 1 (4.16)

E(ν, τ, s) def=
[
16τ2 − 8(τ3 + 4τ2 + τ + 2)ν2 + (τ2 + 2τ + 5)2ν4

]
s2

+ 8
[
4τ + (τ2 − 6τ − 3)ν2

]
s+ 16, 0 ≤ s ≤ 1

(4.17)
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and

F (ν, τ, s) def= (1 − ν2)(ν2 − τ2)s2 − [
2τ(1 − τ) + (3 + τ2)ν2

]
s+ 4τ, 0 ≤ s ≤ 1 (4.18)

Then, by using Eqs. (4.5), (4.6), and (4.11)–(4.14), it can be shown that

E(ν, τ, s) = [X(ν, τ, θ)]2 + [Y (ν, τ, θ)]2 ≥ 0 (4.19)

D(ν, τ, s)−
√
E(ν, τ, s) = 2(1 + τ)2

(
1 − |λ+|2

) (
1 − |λ−|2

)
(4.20)

and
F (ν, τ, s) = (1 + τ)2

(
1 − |λ+|2|λ−|2

)
(4.21)

As a preliminary to the future development, let

H(ν, τ, s) def= [D(ν, τ, s)]2 − E(ν, τ, s) (4.22)

Then Eqs. (4.16) and (4.17) imply that

H(ν, τ, s) = 4(1 − ν2)s2G(ν, τ, s) (4.23)

where

G(ν, τ, s) def= (1 − ν2)(τ2 − ν2)2s2 + (τ2 − ν2)
[
ν2τ2 + (4 − 6ν2)τ − 3ν2

]
s

+ 4τ
[
ν2τ2 + (1 − ν2)τ − ν2

]
, 0 ≤ s ≤ 1

(4.24)

With the above preparations, we have Theorem 6.

Theorem 6. (A) For any (ν, τ), the condition Eq. (4.2) is equvalent to the conditions

D(ν, τ, s) ≥ 0, 0 ≤ s ≤ 1 (4.25)

H(ν, τ, s) ≥ 0, 0 ≤ s ≤ 1 (4.26)

and
F (ν, τ, s) ≥ 0, 0 ≤ s ≤ 1 (4.27)

(B) Eqs. (4.25)–(4.27) are necessary conditions for any (ν, τ) to be c-τ stable.

Proof . Part B is an immediate result of part A and Theorem 4. Thus only part A
needs to be proved. To proceed, note that |λ+| ≤ 1 and |λ−| ≤ 1 if and only if (i)

(
1 − |λ+|2

) (
1 − |λ−|2

) ≥ 0

and (ii) (
1 − |λ+|2|λ−|2

) ≥ 0,
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Thus, by using Eqs. (3.5), (2.4), (4.15), (4.20), and (4.21), it is easy to see that Eq. (4.2)
is equivalent to Eq. (4.27) and

D(ν, τ, s)−
√
E(ν, τ, s) ≥ 0, 0 ≤ s ≤ 1 (4.28)

As a result, to complete the proof, one needs only to show that Eqs. (4.25) and (4.26) is
equivalent to Eq. (4.28).

To proceed, for simplicity, in the following D(ν, τ, s), E(ν, τ, s), F (ν, τ, s), G(ν, τ, s),
and H(ν, τ, s) may be abbreviated as D, E, F , G, and H, respectively. By using the fact
that E ≥ 0 (see Eq. (4.19)), it is easy to show that the condition D−√

E ≥ 0 implies that
(i) D ≥ 0 and (ii)

D2 − E = (D +
√
E)(D −

√
E) ≥ 0 (4.29)

Thus, with the aid of Eq. (4.22), one concludes that Eq. (4.28) implies both Eqs. (4.25)
and (4.26).

To show that Eqs. (4.25) and (4.26) imply Eq. (4.28), note that

D −
√
E = D ≥ 0 if D ≥ 0 and E = 0 (4.30)

Moreover, because D +
√
E > 0 if D ≥ 0 and E > 0, one has

D −
√
E =

D2 −E

D +
√
E

≥ 0 if D ≥ 0, D2 − E ≥ 0, and E > 0 (4.31)

Thus, with the aid of Eqs. (4.19), (4.22), (4.30) and (4.31), one concludes that Eqs. (4.25)
and (4.26) indeed imply Eq. (4.28). QED.

At this juncture note that, given any (ν, τ), D(ν, τ, s), F (ν, τ, s) and G(ν, τ, s) are all
quadratic polynomials in s and thus their minimum values in the interval 0 ≤ s ≤ 1 are
easy to evaluate. As will be shown, this makes the analytical study of Eqs. (4.25)–(4.27)
a relatively simple one. This is very fortunate because, according to Theorem 6, these
equations play key roles in the current stability study.

To proceed, note that an immediate result of Theorem 6 is Theorem 7.

Theorem 7. (i) D(ν, τ, 0) ≥ 0, (ii) D(ν, τ, 1) ≥ 0, (iii) F (ν, τ, 0) ≥ 0, (iv) F (ν, τ, 1) ≥
0, (v) H(ν, τ, 0) ≥ 0, and (vi) H(ν, τ, 1) ≥ 0 are all necessary conditions for a given (ν, τ)
to be c-τ stable.

To study conditions (i)–(vi) referred to above, Eqs. (4.16) (4.18), (4.23), and (4.24)
are used to yield

D(ν, τ, 0) = 4 (4.32)

D(ν, τ, 1) = (2 − ν2)τ2 + 2(2 − 3ν2)τ + 2ν4 − 5ν2 + 4 (4.33)

F (ν, τ, 0) = 4τ (4.34)
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F (ν, τ, 1) = (2 + τ + ν2)(τ − ν2) (4.35)

H(ν, τ, 0) = 0 (4.36)

and
H(ν, τ, 1) = 4(1 − ν2)(τ − ν2)2

[
(2 + τ)2 − ν2

]
(4.37)

According to Eqs. (4.32) and (4.36), conditions (i) and (v) referred to in Theorem 7 are
satisfied automatically. The significance of other conditions will be partially addressed in
the following Theorems 8–11.

Theorem 8. F (ν, τ, 0) ≥ 0 and F (ν, τ, 1) ≥ 0 if and only if τ ≥ ν2.

Proof . According to Eq. (4.34), F (ν, τ, 0) ≥ 0 if and only if τ ≥ 0. With the aid of
Eq. (4.35) and the fact that 2 + τ + ν2 > 0 if τ ≥ 0, one concludes that F (ν, τ, 0) ≥ 0
and F (ν, τ, 1) ≥ 0 imply τ ≥ ν2. Conversely, it is easy to see that F (ν, τ, 0) ≥ 0 and
F (ν, τ, 1) ≥ 0 if τ ≥ ν2. QED.

Theorem 9. Let τ ≥ ν2. Then H(ν, τ, 1) > 0 if and only if τ > ν2 and ν2 < 1.

Proof . With the aid of the assumption τ ≥ ν2 and Eq. (4.37), H(ν, τ, 1) > 0 implies
(i) τ > ν2 and (ii)

(ν2 − 1)
[
ν2 − (2 + τ)2

]
> 0 (4.38)

Because τ > ν2 implies τ > 0 and thus ν2 − 1 > ν2 − (2 + τ)2, conditions (i) and (ii)
imply either (a) ν2 < 1 or (b) ν2 > (2 + τ)2. Case (b) can be ruled out because it along
with condition (i) implies τ > (2+ τ)2, a result inconsistent with τ > 0 which follows from
condition (i). Thus H(ν, τ, 1) > 0 implies τ > ν2 and ν2 < 1, if τ ≥ ν2 is assumed.

Conversely, because (2+ τ)2 > τ > ν2 if τ > ν2, Eq. (4.37) implies that H(ν, τ, 1) > 0
if τ > ν2 and ν2 < 1. Thus the proof is completed. QED.

Theorem 10. Let τ ≥ ν2. Then H(ν, τ, 1) = 0 if and only if at least one of the two
cases: (i) τ = ν2 and (ii) ν2 = 1, is true.

Proof . Eq. (4.37) implies that H(ν, τ, 1) = 0 if and only if at least one of the three
cases: (i) ν2 = 1, (ii) τ = ν2, and (iii) ν2 = (2 + τ)2, is true. Case (iii) can be ruled out
because it along with the assumption τ ≥ ν2 implies τ ≥ (2 + τ)2, a result inconsistent
with τ ≥ 0 (which follows from τ ≥ ν2). Thus the proof is completed. QED.

Theorem 11. Let τ = ν2. Then D(ν, τ, 1) ≥ 0 if and only if ν2 ≤ 1.

Proof . Let τ = ν2. Then Eq. (4.33) implies that

D(ν, τ, 1) = (1 − τ)(τ2 + 3τ + 4) (τ = ν2) (4.39)

With the aid of Eq. (4.39) and the fact that

τ2 + 3τ + 4 = (τ + 3/2)2 + 7/4 ≥ 7/4, −∞ < τ < +∞ (4.40)
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it is easy to see that, assuming τ = ν2, D(ν, τ, 1) ≥ 0 if and only if ν2 ≤ 1. QED.

According to Theorems 8–10, the conditions (i) F (ν, τ, 0) ≥ 0, (ii) F (ν, τ, 1) ≥ 0, and
(iii) H(ν, τ, 1) ≥ 0 require that τ = ν2 if the conditions τ ≥ ν2 and ν2 ≤ 1 are not satisfied
simultaneously. On the other hand, according to Theorem 11, the condition D(ν, τ, 1) ≥ 0
requires that ν2 ≤ 1 for the case τ = ν2. Thus one has Theorem 12.

Theorem 12. The conditions (i) D(ν, τ, 1) ≥ 0, (ii) F (ν, τ, 0) ≥ 0, (iii) F (ν, τ, 1) ≥ 0,
and (iv) H(ν, τ, 1) ≥ 0 require that τ ≥ ν2 and ν2 ≤ 1. As such, Theorem 7 implies that

τ ≥ ν2 and ν2 ≤ 1 (4.41)

are necessary conditions for a given (ν, τ) to be c-τ stable.

In the following, it will be shown that only a subset of those τ and ν that satisfy
the necessary conditions Eq. (4.41) will also satisfy the sufficient conditions for stability.
As a prerequisite, we shall first study the conditions under which the matrix Q(ν, τ, θ) is
defective if τ and ν satisfy Eq. (4.41). We begin with Theorem 13.

Theorem 13. Let τ ≥ ν2 and ν2 ≤ 1. Then Q(ν, τ, θ) is defective if and only if

4(1 + τ) = ν2(τ2 + 2τ + 5) (4.42)

and
cos(θ/2) = 0 (4.43)

Proof . Assuming τ ≥ ν2 and ν2 ≤ 1, first we will show that

λ+(ν, τ, θ) = λ−(ν, τ, θ) (4.44)

if and only if Eqs. (4.42) and (4.43) are satisfied. According to Eq. (4.10), Eq. (4.44) is
equivalent to √

X2 + Y 2 +X = 0 and
√
X2 + Y 2 −X = 0 (4.45)

Thus Eq. (4.44) is true if and only if

X = Y = 0 (4.46)

According to Eq. (4.6), Y = 0 if and only if at least one of the four cases: (a) ν = 0,
(b) τ = 1, (c) sin(θ/2) = 0, and (d) cos(θ/2) = 0, is true. For case (a) ν = 0, Eqs. (4.5)
and the assumption τ ≥ ν2 imply that

X = 4
[
1 + τ sin2(θ/2)

] ≥ 4 (ν = 0) (4.47)

Thus case (a) is incompatible with Eq. (4.46).
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For case (b) τ = 1, Eq. (4.5) implies that

X = 4 cos2(θ/2) + 8(1 − ν2) sin2(θ/2) (τ = 1) (4.48)

Using the assumption ν2 ≤ 1, Eq. (4.48) implies that, for case (b), X = 0 if and only if
ν2 = 1 and cos(θ/2) = 0.

Because cos2(θ/2) = 1 if sin(θ/2) = 0, Eq. (4.5) implies that X = 4 if sin(θ/2) = 0.
Thus case (c) is incompatible with Eq. (4.46).

Because sin2(θ/2) = 1 if cos(θ/2) = 0, Eq. (4.5) implies that

X = 4(1 + τ) − ν2(τ2 + 2τ + 5) (cos(θ/2) = 0) (4.49)

if cos(θ/2) = 0. Thus, for case (d), X = 0 if and only if Eq. (4.42) is satisfied.
Assuming τ ≥ ν2 and ν2 ≤ 1, it has been shown that X = Y = 0 if and only if at

least one of the following two conditions: (i)

τ = 1, ν2 = 1, and cos(θ/2) = 0 (i.e., case (b))

and (ii)

cos(θ/2) = 0 and 4(1 + τ) = ν2(τ2 + 2τ + 5) (i.e., case (d))

is met. Because τ = 1 and ν2 = 1 form a special solution of Eq. (4.42), condition (i) is
only a special case of condition (ii). Thus, assuming τ ≥ ν2 and ν2 ≤ 1, Eq. (4.44) (which
is equivalent to X = Y = 0) is true if and only if Eqs. (4.42) and (4.43) are satisfied.
Moreover, with the aid of Eq. (2.8) and the fact that sin(θ/2) = ±1 if cos(θ/2) = 0,
Eq. (4.43) also implies that one of the off-diagonal elements of Q(ν, τ, θ) does not vanish
and thus Q(ν, τ, θ) is not a multiple of I. According to Theorem 1, Q(ν, τ, θ) is defective if
and only if (i) Eq. (4.44) is true and (ii) Q(ν, τ, θ) is not a multiple of I. Thus the current
theorem is proved. QED.

An immediate result of Theorem 13 is Theorem 14.

Theorem 14. The matrix Q(ν, τ, θ) is defective if τ = ν2 = 1 and cos(θ/2) = 0.

To proceed, we will establish Theorem 15.

Theorem 15. Let Q(ν, τ, θ) be defective with τ ≥ ν2 and ν2 ≤ 1. Then the special
case

ρ(Q(ν, τ, θ)) = 1 (4.50)

occurs if and only if
τ = ν2 = 1, and cos(θ/2) = 0 (4.51)

Proof . As a preliminary, first we will deduce several results from the current basic
assumption, i.e., Q(ν, τ, θ) is defective with τ ≥ ν2 and ν2 ≤ 1. According to Theorem 13
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and its proof, Eqs. (4.42), (4.43), and (4.46) follow immediately from the basic assumption.
Also, by using Eq. (4.42) and the fact that

τ2 + 2τ + 5 = (1 + τ)2 + 4 ≥ 4, −∞ < τ < +∞ (4.52)

one concludes that

ν2 =
4(1 + τ)

τ2 + 2τ + 5
(4.53)

Moreover, because sin(θ/2) = ±1 if cos(θ/2) = 0, with the aid of Eqs. (4.43) and (4.46),
Eq. (4.10) implies that

ρ(Q(ν, τ, θ)) =
∣∣∣∣
ν(3 + τ)
2(1 + τ)

∣∣∣∣ (4.54)

Next assume Eq. (4.50). Because 3 + τ > 0 (which follows from the assumption
τ ≥ ν2), Eqs. (4.50) and (4.54) imply that

ν2 =
4(1 + τ)2

(3 + τ)2
(4.55)

Eliminating ν2 from Eqs. (4.53) and (4.55) and using the basic assumption Eq. (2.4) (which
is consistent with the current assumption τ ≥ ν2), one has

τ3 + 2τ2 + τ − 4 ≡ (τ − 1)(τ2 + 3τ + 4) = 0 (4.56)

Eq. (4.56) coupled with Eq. (4.40) implies that τ = 1. In turn, by using either Eq. (4.53)
or Eq. (4.55), one has ν2 = 1 as a result of τ = 1. Because Eq. (4.43) (i.e., cos(θ/2) = 0) is
a result of the basic assumption, it has been shown that Eq. (4.51) follows from the basic
assumption and Eq. (4.50).

Conversely, with the aid of (i) Theorem 1, and (ii) Eqs. (2.8) and (3.5), it can be
shown by direct substitution that both the basic assumption and Eq. (4.50) are valid for
the special case Eq. (4.51). Thus the proof is completed. QED.

Next we have Theorem 16.

Theorem 16. A given (ν, τ) satisfies Eq. (4.2) and yet is c-τ unstable if and only if
τ = ν2 = 1.

Proof. Theorems 6 and 12 imply that Eq. (4.41) is a result of Eq. (4.2). Thus,
according to Theorems 5 and 15, τ = ν2 = 1 if (ν, τ) satisfies Eq. (4.2) and is also c-τ
unstable.

Conversely, Theorem 6 coupled with Eqs. (4.16), (4.18), and (4.23) implies that any
(ν, τ) with τ = ν2 = 1 satisfies Eq. (4.2). Moreover, according to Theorems 3, 14 and 15,
such a (ν, τ) is also c-τ unstable. Thus the proof is completed. QED.

At this juncture, note that Theorems 14 and 15 state that, for the special case
Eq. (4.51), Q(ν, τ, θ) is defective with ρ(Q(ν, τ, θ)) = 1. Thus, according to a com-
ment made following Eq. (3.16), for this special case, the magnitude of any element in
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[Q(ν, τ, θ)]m will grow not faster than linearly with m. Because round-off errors associated
with a modern computer are in the order of 10−10 or less, the instability associated with
this special case generally is very mild and may not be detected even after billions of time
steps have elapsed.

Next, by combining Theorems 6, 12 and 16, one arrives at Theorem 17.

Theorem 17. A given (ν, τ) which does not satisfy Eq. (4.41) is c-τ unstable. On
the other hand, a given (ν, τ) which satisfies Eq. (4.41) is c-τ stable if and only if (i) it
satisfies Eqs. (4.25)–(4.27); and (ii) it does not belong to the special case τ = ν2 = 1.

Compared to those given in Theorem 3, the necessary and sufficient stability conditions
given in Theorem 17 are much more explicit and easier to handle. As such, this theorem
will be used repeatedly in the rest of the development. In particular, it will be used to
establish Theorem 18.

Theorem 18. The c-τ scheme is stable for any one of the following special cases: (a)
ν = 0 and τ ≥ 0; (b) ν2 = 1 and τ > 1; and (c) 0 < ν2 < 1 and τ = |ν|.

Proof . Let 0 ≤ s ≤ 1 throughout this proof. Then, with the aid of Eqs. (4.16), (4.18),
(4.23), and (4.24), for case (a) ν = 0 and τ ≥ 0, one has

D(ν, τ, s) = D(0, τ, s) = 2
[
(1 + τs)2 + 1

] ≥ 4 (4.57)

F (ν, τ, s) = F (0, τ, s) = τ(2 − s)(2 + τs) ≥ 0 (4.58)

and
H(ν, τ, s) = H(0, τ, s) = 4s2τ2(2 + τs)2 ≥ 0 (4.59)

Because ν = ±1 if ν2 = 1, for case (b) ν2 = 1 and τ > 1, one has

D(ν, τ, s) = D(±1, τ, s) = (1 − τ)2s+ 4(1 − s) > 0 (4.60)

F (ν, τ, s) = F (±1, τ, s) = (1 − τ)2s+ 4(τ − s) > 0 (4.61)

and
H(ν, τ, s) = H(±1, τ, s) = 0 (4.62)

Because 0 < ν2 < 1 and τ = |ν| if and only if ν = ±τ and 0 < τ < 1, for case (c)
0 < ν2 < 1 and τ = |ν|, one has

D(ν, τ, s) = D(±τ, τ, s) = τ(1 − τ)(8 + 5τ − τ2)s+ 4(1 − τs) > 0 (4.63)

F (ν, τ, s) = F (±τ, τ, s) = τ(1 − τ)(τ2 + τ + 2)s+ 4τ(1 − s) > 0 (4.64)

and
H(ν, τ, s) = H(±τ, τ, s) = 16τ2(1 − τ2)2(1 − τ)s2 ≥ 0 (4.65)
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Obviously cases (a) and (b) are special cases of the more general case defined by
Eq. (4.41). Moreover, because ν2 < |ν| if 0 < ν2 < 1, case (c) is also a special case of the
more general case. In addition, none of cases (a)–(c) contains the special case τ = ν2 = 1.
With the aid of these observations and Eqs. (4.57)–(4.65), Theorem 18 follows directly
from Theorem 17. QED.

Next let
Ψ def= {(ν, τ)|0 < ν2 < 1, τ ≥ ν2 and τ2 �= ν2} (4.66)

Ψ−
def= {(ν, τ)|0 < ν2 < 1, τ ≥ ν2 and τ2 < ν2} (4.67)

and
Ψ+

def= {(ν, τ)|0 < ν2 < 1, τ ≥ ν2 and τ2 > ν2} (4.68)

Then Ψ− and Ψ+ are disjoint, and

Ψ = Ψ+ ∪ Ψ− (4.69)

Moreover, we have Theorems 19 and 20.

Theorem 19. Excluding the four special cases addressed in Theorems 16 and 18,
Ψ is the set of all other (ν, τ) that satisfy the necessary stability conditions τ ≥ ν2 and
ν2 ≤ 1 given in Theorem 12.

Proof. Note that (i) τ = |ν| > ν2 if 0 < ν2 < 1 and τ = |ν|; (ii) τ2 = ν2 if τ = |ν|,
(iii) τ = |ν| if τ ≥ ν2 and τ2 = ν2, and (iv) τ = τ2 = ν2 implies either τ2 = ν2 = 0
or τ2 = ν2 = 1. Items (i)–(iii) imply that 0 < ν2 < 1 and τ = |ν| (which is case (c) in
Theorem 18) if and only if 0 < ν2 < 1, τ > ν2, and τ2 = ν2. On the other hand, item (iv)
implies that the case with both 0 < ν2 < 1 and τ = τ2 = ν2 does not exist. The proof
follows from the above two observations and the facts that (i) τ ≥ ν2 = 0 if and only if
ν = 0 and τ ≥ 0, and (ii) τ ≥ ν2 = 1 if and only if either (a) τ = ν2 = 1 or (b) ν2 = 1 and
τ > 1. QED.

Theorem 20. Eq. (4.68) is equivalent to

Ψ+ = {(ν, τ)|0 < ν2 < 1, τ > ν2 and τ2 > ν2} (4.70)

Proof. Note that (i) ν4 > ν2 if τ = ν2 and τ2 > ν2, and (ii) the relations ν4 > ν2 and
0 < ν2 < 1 are contradictory. Thus the case with 0 < ν2 < 1, τ = ν2, and τ2 > ν2 does
not exist, i.e., Eq. (4.68) is equivalent to Eq. (4.70). QED.

To proceed, we will establish Theorems 21 and 22.

Theorem 21. Let (ν, τ) ∈ Ψ. Then

D(ν, τ, s) > 0, 0 ≤ s ≤ 1 (4.71)
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Proof . As a preliminary, note that Eq. (4.33) implies that

D(ν, τ, 1) = (2 − ν2)

[(
τ +

2 − 3ν2

2 − ν2

)2

+
2(1 − ν2)(ν4 + ν2 + 2)

(2 − ν2)2

]
, ν2 �= 2 (4.72)

Thus
D(ν, τ, 1) > 0 if ν2 < 1 (4.73)

Let (ν, τ) ∈ Ψ−. Then Eqs. (4.16) and (4.67) imply that
[
∂2D(ν, τ, s)

∂s2

]

ν,τ

= 4(1 − ν2)(τ2 − ν2) < 0 ((ν, τ) ∈ Ψ−) (4.74)

i.e., for any given (ν, τ) ∈ Ψ−, the relation between the function D(ν, τ, s) and s is repre-
sented by a curve which is concave downward on the s-D plane. Thus

min
0≤s≤1

D(ν, τ, s) = min{D(ν, τ, 0), D(ν, τ, 1)} ((ν, τ) ∈ Ψ−) (4.75)

By using Eqs. (4.32) and (4.73), Eq. (4.75) implies that

D(ν, τ, s) > 0, 0 ≤ s ≤ 1 ((ν, τ) ∈ Ψ−) (4.76)

Next let (ν, τ) ∈ Ψ+. Then, by using Eq. (4.68) (in particular the facts that ν2 < 1
and (1 − ν2)(τ2 − ν2) > 0), Eq. (4.16) implies that

D(ν, τ, s) ≥ [
4τ + (τ2 − 6τ − 3)ν2

]
s+ 4 ≥ [

4τν2 + (τ2 − 6τ − 3)ν2
]
s+ 4

= (1 − τ)2ν2s+ 4(1 − ν2s) > 0, 0 ≤ s ≤ 1 ((ν, τ) ∈ Ψ+)
(4.77)

It has been shown that D(ν, τ, s) > 0, 0 ≤ s ≤ 1, for both case (a) (ν, τ) ∈ Ψ− and
case (b) (ν, τ) ∈ Ψ+. Because Ψ = Ψ− ∪ Ψ+, the proof is completed. QED.

Theorem 22. Let (ν, τ) ∈ Ψ. Then

F (ν, τ, s) ≥ 0, 0 ≤ s ≤ 1 (4.78)

Proof . Let (ν, τ) ∈ Ψ+. Then Eqs. (4.18) and (4.68) imply that
[
∂2F (ν, τ, s)

∂s2

]

ν,τ

= 2(1 − ν2)(ν2 − τ2) < 0 ((ν, τ) ∈ Ψ+) (4.79)

i.e., for any given (ν, τ) ∈ Ψ+, the relation between the function F (ν, τ, s) and s is repre-
sented by a curve which is concave downward on the s-F plane. Thus

min
0≤s≤1

F (ν, τ, s) = min{F (ν, τ, 0), F (ν, τ, 1)} ((ν, τ) ∈ Ψ+) (4.80)
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By using Eqs. (4.34), (4.35) and (4.70), Eq. (4.80) implies that

F (ν, τ, s) > 0, 0 ≤ s ≤ 1 ((ν, τ) ∈ Ψ+) (4.81)

Next let (ν, τ) ∈ Ψ−. Then, by using Eq. (4.67) (in particular the facts that (1 −
ν2)(ν2 − τ2) > 0 and 0 < τ < |ν| < 1), Eq. (4.18) implies that

[
∂F (ν, τ, s)

∂s

]

ν,τ

= 2(1 − ν2)(ν2 − τ2)s− [
2τ(1 − τ) + (3 + τ2)ν2

]

≤ 2(1 − ν2)(ν2 − τ2) − [
2τ(1 − τ) + (3 + τ2)ν2

]

= −2(1 − ν2)τ2 − 2ν4 − 2τ(1 − τ) − (1 + τ2)ν2 < 0,

0 ≤ s ≤ 1 ((ν, τ) ∈ Ψ−)

(4.82)

Thus, for any given (ν, τ) ∈ Ψ−, the relation between F and s is represented by a curve
on the s-F plane which has a negative slope in the interval 0 ≤ s ≤ 1. In turn, this fact
coupled with Eqs. (4.35) and (4.67) implies that

F (ν, τ, s) ≥ F (ν, τ, 1) ≥ 0, 0 ≤ s ≤ 1 ((ν, τ) ∈ Ψ−) (4.83)

It has been shown that F (ν, τ, s) ≥ 0, 0 ≤ s ≤ 1, for both case (a) (ν, τ) ∈ Ψ+ and
case (b) (ν, τ) ∈ Ψ−. Because Ψ = Ψ− ∪ Ψ+, the proof is completed. QED.

According to Theorems 21 and 22, Eqs. (4.25) and (4.27) are satisfied by all (ν, τ) ∈ Ψ.
Thus, Theorem 17 implies that a given (ν, τ) ∈ Ψ is c-τ stable if and only if it satisfies
Eq. (4.26). Thus, with the aid of Eqs. (4.23) and (4.66), one arrives at Theorem 23.

Theorem 23. For any given (ν, τ) ∈ Ψ, Eq. (4.26) is equivalent to

inf
0<s≤1

G(ν, τ, s) ≥ 0 (4.84)

where the expression on the left side of the sign “≥” denotes the infimum (i.e., the greatest
lower bound) of G(ν, τ, s) in the interval 0 < s ≤ 1. As such, a given (ν, τ) ∈ Ψ is c-τ
stable if and only if it satisfies Eq. (4.84).

Because of Theorem 23, in the following we shall focus on finding those (ν, τ) ∈ Ψ that
satisfy Eq. (4.84).

To proceed, first we will establish Theorem 24.

Theorem 24. For any given (ν, τ) ∈ Ψ, let

so(ν, τ)
def=

ν2τ2 + (4 − 6ν2)τ − 3ν2

2(1 − ν2)(ν2 − τ2)
(4.85)
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Let so(ν, τ) be abbreviated as so. Then

inf
0<s≤1

G(ν, τ, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(ν, τ, so) if 0 < so < 1

G(ν, τ, 1) if so ≥ 1

G(ν, τ, 0) if so ≤ 0

(4.86)

Proof . To facilitate the proof, the domain of the function G defined in Eq. (4.24)
will be extended to −∞ < s < +∞. As such, for any given (ν, τ) ∈ Ψ and any s with
−∞ < s < +∞, one has

[
∂G(ν, τ, s)

∂s

]

ν,τ

= 2(1 − ν2)(τ2 − ν2)2 [s− so(ν, τ)] (4.87)

and [
∂2G(ν, τ, s)

∂s2

]

ν,τ

= 2(1 − ν2)(τ2 − ν2)2 > 0 (4.88)

Thus, for any given (ν, τ) ∈ Ψ, (i) the relation between the function G(ν, τ, s) and s is
represented by a curve which is concave upward on the s-G plane, and thus the absolute
minimum of G in the interval −∞ < s < +∞ occurs at where ∂G/∂s = 0, i.e.,

s = so(ν, τ) (4.89)

(ii) G is strictly monotonically decreasing in the interval s < 1 if so ≥ 1; and (iii) G is
strictly monotonically increasing in the interval s > 0 if so ≤ 0. In addition, for any given
(ν, τ), because G is a continuous function of s in the interval −∞ < s < +∞, one also has
(iv)

lim
s→0+

G(ν, τ, s) = G(ν, τ, 0) (4.90)

Eq. (4.86) is a direct result of (i)–(vi). QED.

With the aid of Theorem 24, the bulk of the remaider of the paper will be devoted to
answer a key question, i.e., given any ν with 0 < ν2 < 1 (which is required by the condition
(ν, τ) ∈ Ψ), what is the range of τ that will satisfy Eq. (4.84) and the rest of the condition
(ν, τ) ∈ Ψ (i.e., τ ≥ ν2 and τ2 �= ν2)?

To proceed, let

I±(x) def=
3x− 2 ± 2

√
3x2 − 3x+ 1
x

, 0 < x < 1 (4.91)

and (iii)

J±(x) def=
3x− 2 ±√

2(x3 − x+ 2)
2 − x

, 0 < x < 1 (4.92)
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Hereafter, for any function f(x), as usual
√
f(x) denotes the principal square root of f(x).

As such
√
f(x) ≥ 0 if f(x) ≥ 0. Given Eqs. (4.91) and (4.92), one can establish Theorem

25.

Theorem 25. In the domain 0 < x < 1, we have

I+(x) > 0 (0 < x < 1) (4.93)

I−(x) < 0 (0 < x < 1) (4.94)

J+(x) > 0 (0 < x < 1) (4.95)

and
J−(x) < 0 (0 < x < 1) (4.96)

Proof . Because
4(3x2 − 3x+ 1) = (3x− 2)2 + 3x2 (4.97)

one has
2
√

3x2 − 3x+ 1 > |3x− 2|, x �= 0 (4.98)

Eqs. (4.93) and (4.94) follow directly from Eqs. (4.91) and (4.98).
Next because

2(x3 − x+ 2) = (3x− 2)2 + 2x(x− 2)
(
x− 5

2

)
(4.99)

one has √
2(x3 − x+ 2) > |3x− 2|, 0 < x < 2 (4.100)

Eqs. (4.95) and (4.96) follow directly from Eqs. (4.92) and (4.100). QED.

With the above preparations and the understanding that hereafter the symbol “⇔”
may be used to take the place of the statement “if and only if”, Theorem 26 can now be
presented.

Theorem 26. (A) For any (ν, τ) ∈ Ψ−, we have

so(ν, τ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 ⇔ τ > I+(ν2)

= 0 ⇔ τ = I+(ν2)

< 0 ⇔ τ < I+(ν2)

((ν, τ) ∈ Ψ−) (4.101)

and

so(ν, τ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 1 ⇔ τ > J+(ν2)

= 1 ⇔ τ = J+(ν2)

< 1 ⇔ τ < J+(ν2)

((ν, τ) ∈ Ψ−) (4.102)
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On the other hand, (B) for any (ν, τ) ∈ Ψ+, we have

so(ν, τ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 ⇔ τ < I+(ν2)

= 0 ⇔ τ = I+(ν2)

< 0 ⇔ τ > I+(ν2)

((ν, τ) ∈ Ψ+) (4.103)

and

so(ν, τ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 1 ⇔ τ < J+(ν2)

= 1 ⇔ τ = J+(ν2)

< 1 ⇔ τ > J+(ν2)

((ν, τ) ∈ Ψ+) (4.104)

Proof . As a preliminary, note that

ν2τ2 + (4 − 6ν2)τ − 3ν2 = ν2
[
τ − I+(ν2)

] [
τ − I−(ν2)

]
(0 < ν2 < 1) (4.105)

In addition, because τ ≥ ν2 and 0 < ν2 < 1 if (ν, τ) ∈ Ψ, Eq. (4.94) implies that

τ − I−(ν2) > 0, (ν, τ) ∈ Ψ (4.106)

Because the expression on the left side of Eq. (4.105) is the numerator of the fraction
on the right side of Eq. (4.85), Eq. (4.101) now follows from Eqs. (4.85), (4.105) and
(4.106), and the fact that 0 < ν2 < 1, and ν2 − τ2 > 0 if (ν, τ) ∈ Ψ−.

To prove Eq. (4.102), note that Eq. (4.85) implies that, for any (ν, τ) ∈ Ψ,

so(ν, τ) − 1 =
(2 − ν2)τ2 + (4 − 6ν2)τ − ν2(5 − 2ν2)

2(1 − ν2)(ν2 − τ2)
(4.107)

Also one has

(2 − ν2)τ2 + (4 − 6ν2)τ − ν2(5 − 2ν2) = (2 − ν2)
[
τ − J+(ν2)

] [
τ − J−(ν2)

]
(0 < ν2 < 1)

(4.108)
In addition, because τ ≥ ν2 and 0 < ν2 < 1 if (ν, τ) ∈ Ψ, Eq. (4.96) implies that

τ − J−(ν2) > 0, (ν, τ) ∈ Ψ (4.109)

Because the expression on the left side of Eq. (4.108) is the numerator of the fraction
on the right side of Eq. (4.107), Eq. (4.102) now follows from Eqs. (4.107)–(4.109), and
the fact that 0 < ν2 < 1 and ν2 − τ2 > 0 if (ν, τ) ∈ Ψ−.

This finishes the proof of part A. Part B can be proved using a line of logic identical
to that used to prove part A. The only difference that sets part B apart from part A is
that ν2 −τ2 < 0 for the case (ν, τ) ∈ Ψ+ while ν2−τ2 > 0 for the case (ν, τ) ∈ Ψ−. QED.
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Next, note that Eq. (4.24) yields

G(ν, τ, 1) = (τ − ν2)2
[
(2 + τ)2 − ν2

]
(4.110)

and
G(ν, τ, 0) = 4τ

[
ν2τ2 + (1 − ν2)τ − ν2

]
(4.111)

In addition, for any (ν, τ) ∈ Ψ, Eqs. (4.24) and (4.85) also yield

G(ν, τ, so) = −ν
2(1 + τ)2

[
ν2τ2 + 2(ν2 − 4)τ + 9ν2

]
4(1 − ν2)

(4.112)

An immediate result of Eqs. (4.66) and (4.110) is Theorem 27.

Theorem 27. For any (ν, τ) ∈ Ψ, we have

G(ν, τ, 1) ≥ 0 ((ν, τ) ∈ Ψ) (4.113)

Next let

K±(x) def=
x− 1 ±√

1 − 2x+ 5x2

2x
, 0 < x < 1 (4.114)

Then one has Theorems 28 and 29.

Theorem 28. In the domain 0 < x < 1, we have

K+(x) > 0 (0 < x < 1) (4.115)

and
K−(x) < 0 (0 < x < 1) (4.116)

Proof . Because
1 − 2x+ 5x2 = (x− 1)2 + 4x2 (4.117)

one has √
1 − 2x+ 5x2 > |x− 1|, x �= 0 (4.118)

Eqs. (4.115) and (4.116) follow directly from Eqs. (4.114) and (4.118). QED.

Theorem 29. For any (ν, τ) ∈ Ψ, we have

G(ν, τ, 0) ≥ 0 ⇔ τ ≥ K+(ν2) ((ν, τ) ∈ Ψ) (4.119)

Proof . Note that

4τ
[
ν2τ2 + (1 − ν2)τ − ν2

]
= 4τν2

[
τ −K+(ν2)

] [
τ −K−(ν2)

]
, 0 < ν2 < 1 (4.120)
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In addition, because τ ≥ ν2 and 0 < ν2 < 1 if (ν, τ) ∈ Ψ, Eq. (4.116) implies that

τ −K−(ν2) > 0, (ν, τ) ∈ Ψ (4.121)

Eq. (4.119) now follows from Eqs. (4.111), (4.120) and (4.121), and the fact that τ ≥ ν2

and 0 < ν2 < 1 if (ν, τ) ∈ Ψ. QED.

Next let

L±(x) def=
4 − x± 2

√
2(2 − x− x2)
x

, 0 < x < 1 (4.122)

Then one has Theorems 30 and 31.

Theorem 30. In the domain 0 < x < 1, we have

L+(x) > L−(x) > 0 (0 < x < 1) (4.123)

Proof . Note that (i)

2 − x− x2 = −(x+ 2)(x− 1) > 0, −2 < x < 1 (4.124)

and (ii)

(4 − x)2 −
[
2
√

2(2 − x− x2)
]2

= 9x2 > 0, x �= 0 (4.125)

Thus

4 − x = |4 − x| > 2
√

2(2 − x− x2) > 0, 0 < x < 1 or − 2 < x < 0 (4.126)

Eq. (4.123) is a result of Eqs. (4.122) and (4.126). QED.

Theorem 31. For any (ν, τ) ∈ Ψ, we have

G(ν, τ, so) ≥ 0 ⇔ L−(ν2) ≤ τ ≤ L+(ν2) ((ν, τ) ∈ Ψ) (4.127)

Proof . Note that

ν2τ2 + 2(ν2 − 4)τ + 9ν2 = ν2
[
τ − L+(ν2)

] [
τ − L−(ν2)

]
(0 < ν2 < 1) (4.128)

Because 1 + τ > 0, ν2 > 0, and 1 − ν2 > 0 if (ν, τ) ∈ Ψ, Eqs. (4.112) and (4.128) imply
that

G(ν, τ, so) ≥ 0 ⇔ [
τ − L+(ν2)

] [
τ − L−(ν2)

] ≤ 0 ((ν, τ) ∈ Ψ) (4.129)
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if (ν, τ) ∈ Ψ. Because 0 < ν2 < 1 if (ν, τ) ∈ Ψ, Eq. (4.127) now follows from Eq. (4.129)
and a result of Eq. (4.123), i.e.,

[
τ − L−(ν2)

]
>
[
τ − L+(ν2)

]
, 0 < ν2 < 1 (4.130)

QED.

With the above preliminaries, one can establish Theorem 32.

Theorem 32. (A) Let (ν, τ) ∈ Ψ−. Then (ν, τ) is c-τ stable if and only if it satisfies
one of the three mutually exclusive sets of conditions specified, respectively, in Eqs. (4.131)–
(4.133):

τ ≥ J+(ν2) (4.131)

K+(ν2) ≤ τ ≤ I+(ν2) (4.132)

and
I+(ν2) < τ < J+(ν2) and L−(ν2) ≤ τ ≤ L+(ν2) (4.133)

(B) Let (ν, τ) ∈ Ψ+. Then (ν, τ) is c-τ stable if and only if it satisfies one of the three
mutually exclusive sets of conditions specified, respectively, in Eqs. (4.134)–(4.136):

τ ≤ J+(ν2) (4.134)

τ ≥ I+(ν2) and τ ≥ K+(ν2) (4.135)

and
J+(ν2) < τ < I+(ν2) and L−(ν2) ≤ τ ≤ L+(ν2) (4.136)

Proof . Let
Ψ(α)

−
def= {(ν, τ)|(ν, τ) ∈ Ψ− and so(ν, τ) ≥ 1} (4.137)

Ψ(β)
−

def= {(ν, τ)|(ν, τ) ∈ Ψ− and so(ν, τ) ≤ 0} (4.138)

Ψ(γ)
−

def= {(ν, τ)|(ν, τ) ∈ Ψ− and 0 < so(ν, τ) < 1} (4.139)

Ψ(α)
+

def= {(ν, τ)|(ν, τ) ∈ Ψ+ and so(ν, τ) ≥ 1} (4.140)

Ψ(β)
+

def= {(ν, τ)|(ν, τ) ∈ Ψ+ and so(ν, τ) ≤ 0} (4.141)

and
Ψ(γ)

+
def= {(ν, τ)|(ν, τ) ∈ Ψ+ and 0 < so(ν, τ) < 1} (4.142)

Because Ψ− and Ψ+ are mutually exclusive, the above definitions imply that (i) Ψ(α)
− ,

Ψ(β)
− , Ψ(γ)

− , Ψ(α)
+ , Ψ(β)

+ , and Ψ(γ)
+ are mutually exclusive; (ii)

Ψ− = Ψ(α)
− ∪ Ψ(β)

− ∪ Ψ(γ)
− (4.143)
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and (iii)
Ψ+ = Ψ(α)

+ ∪ Ψ(β)
+ ∪ Ψ(γ)

+ (4.144)

Moreover, by using Theorem 26, Eqs. (4.137)–(4.142) imply

Ψ(α)
− = {(ν, τ)|(ν, τ) ∈ Ψ− and τ ≥ J+(ν2)} (4.145)

Ψ(β)
− = {(ν, τ)|(ν, τ) ∈ Ψ− and τ ≤ I+(ν2)} (4.146)

Ψ(γ)
− = {(ν, τ)|(ν, τ) ∈ Ψ− and I+(ν2) < τ < J+(ν2)} (4.147)

Ψ(α)
+ = {(ν, τ)|(ν, τ) ∈ Ψ+ and τ ≤ J+(ν2)} (4.148)

Ψ(β)
+ = {(ν, τ)|(ν, τ) ∈ Ψ+ and τ ≥ I+(ν2)} (4.149)

and
Ψ(γ)

+ = {(ν, τ)|(ν, τ) ∈ Ψ+ and J+(ν2) < τ < I+(ν2)} (4.150)

respectively.
To proceed, note that:

(a) With the aid of (i) Eqs. (4.137) and (4.140), and (ii) Theorems 24 and 27, Theorem
23 implies that a given (ν, τ) ∈ Ψ(α)

− ∪ Ψ(α)
+ is always c-τ stable.

(b) With the aid of (i) Eqs. (4.138) and (4.141), and (ii) Theorems 24 and 29, Theorem
23 implies that a given (ν, τ) ∈ Ψ(β)

− ∪ Ψ(β)
+ is c-τ stable if and only if

τ ≥ K+(ν2) (4.151)

(c) With the aid of (i) Eqs. (4.139) and (4.142), and (ii) Theorems 24 and 31, Theorem
23 implies that a given (ν, τ) ∈ Ψ(γ)

− ∪ Ψ(γ)
+ is c-τ stable if and only if

L−(ν2) ≤ τ ≤ L+(ν2) (4.152)

Theorem 32 now follows from Eqs. (4.143)–(4.150) and the facts presented in the above
items (a)–(c). QED.

In principle, the question of whether a given (ν, τ) is c-τ stable can now be answered
by using Theorems 12, 16, 18, 19, and 32. However, in its current complicated form,
Theorem 32 is difficult to use. Fortunately, Theorem 32 can be simplified greatly and, in
fact, the stability condition for the c-τ scheme can be cast into a rather simple explicit
form. To obtain this simple form, we begin with Theorem 33.

Theorem 33. We have: (A)

(ν, τ) ∈ Ψ− ⇔ 0 < ν2 < 1 and ν2 ≤ τ <
√
ν2 (4.153)
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(B) Ψ− is not empty; and (C)

(ν, τ) ∈ Ψ+ ⇔ 0 < ν2 < 1 and τ >
√
ν2 (4.154)

Proof . Because (i) −
√
ν2 < τ <

√
ν2 if τ2 < ν2, and (ii) τ2 < ν2 if 0 ≤ τ <

√
ν2, part

A is an immediate result of Eq. (4.67). Part B follows from the trivial fact that ν2 <
√
ν2

if 0 < ν2 < 1. To prove part C, note that (i) τ > 0 if ν2 > 0 and τ ≥ ν2, and (ii) τ >
√
ν2

if τ > 0 and τ2 > ν2. Thus Eq. (4.70) implies that 0 < ν2 < 1 and τ >
√
ν2 if (ν, τ) ∈ Ψ+.

Conversely, because (i)
√
ν2 > ν2 if 0 < ν2 < 1; (ii) τ > ν2 if τ >

√
ν2 and

√
ν2 > ν2;

and (iii) τ2 > ν2 if τ >
√
ν2, one concludes that (ν, τ) ∈ Ψ+ if 0 < ν2 < 1 and τ >

√
ν2.

QED.

Next let
c1

def= 3 − 2
√

2 (4.155)

c2
def= 3/11 (4.156)

c3
def= (41 − 7

√
33)/2 (4.157)

and

c4
def=

⎡
⎣
(√

1664
27

+
181
27

) 1
3

−
(√

1664
27

− 181
27

) 1
3

− 2
3

⎤
⎦

2

(4.158)

We have (i) c1 ≈ 0.172, c2 ≈ 0.273, c3 ≈ 0.394 and c4 ≈ 0.530, and (ii)

0 < c1 < c2 < c3 < c4 < 1 (4.159)

With the above preparations, we have Theorem 34.

Theorem 34. (A) In the domain 0 < x < 1, I+(x), J+(x), K+(x), and L−(x) are
strictly monotonically increasing while L+(x) is strictly monotonically decreasing; (B) we
have

I+(x) < x < K+(x) < L−(x) < J+(x) <
√
x < L+(x), 0 < x < c1 (4.160)

I+(x) = x < K+(x) < L−(x) < J+(x) <
√
x < L+(x), x = c1 (4.161)

x < I+(x) < K+(x) < L−(x) < J+(x) <
√
x < L+(x), c1 < x < c2 (4.162)

x < I+(x) = K+(x) = L−(x) < J+(x) <
√
x < L+(x), x = c2 (4.163)

x < K+(x) < L−(x) < I+(x) < J+(x) <
√
x < L+(x), c2 < x < c3 (4.164)

x < K+(x) < L−(x) < I+(x) = J+(x) =
√
x < L+(x), x = c3 (4.165)

x < K+(x) < L−(x) <
√
x < J+(x) < I+(x) < L+(x), c3 < x < c4 (4.166)
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x < K+(x) < L−(x) =
√
x < J+(x) < I+(x) < L+(x), x = c4 (4.167)

and

x < K+(x) <
√
x < L−(x) < J+(x) < I+(x) < L+(x), c4 < x < 1 (4.168)

(C)
K ′

+(c2) = L′
−(c2) = 121/90 (4.169)

where K ′
+(x) def= dK+(x)/dx and L′

−(x) def= dL−(x)/dx; and (D)

lim
x→0+

L−(x) = 0 and lim
x→1−

K+(x) = 1 (4.170)

In order not to interrupt the current stream of development, the lengthy proof for
Theorem 34 will be provided later in the paper. Here, with the aid of this theorem, we
shall establish a simplified form of the stability condition for the c-τ scheme as given in
Theorem 35.

Theorem 35. Let

τo(x)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0

L−(x) if 0 < x ≤ 3/11

K+(x) if 3/11 ≤ x < 1

1 if x = 1

(4.171)

Γo
def= {(ν, τ)|ν2 ≤ 1, τ ≥ τo(ν2) and (ν2, τ) �= (1, 1)} (4.172)

and
Γ def= {(ν, τ)|ν2 ≤ 1 and τ ≥ τo(ν2)} (4.173)

Then: (A) τo(x) is continuous at x = 0 and x = 1; (B) τo(x) is consistently defined at
x = 3/11; (C)

lim
x→ 3

11
−
τ ′o(x) = lim

x→ 3
11

+
τ ′o(x) = 121/90 (4.174)

where τ ′o(x)
def= dτo(x)/dx; (D) τo(x) is strictly monotonically increasing in the interval

0 < x < 1; (E)
x < τo(x) <

√
x, 0 < x < 1 (4.175)

(F) a given (ν, τ) is c-τ stable if and only if (ν, τ) ∈ Γo; and (G) a given (ν, τ) satisfies
Eq. (4.2) if and only if (ν, τ) ∈ Γ.

Proof . Part A is a result of Eqs. (4.170) and (4.171). Part B follows from the fact
that L−(3/11) = K+(3/11) = 1/3. Part C follows from Eqs. (4.156) and (4.169). Part D
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is a result of part A of Theorem 34, and parts B and C of the current theorem. Part E is
a result of Eqs. (4.160)–(4.168) and (4.171).

To prove part F, one needs to show that: (i) (ν, τ) ∈ Γo for any (ν, τ) that is c-τ
stable; and (ii) (ν, τ) /∈ Γo for any (ν, τ) that is c-τ unstable. Here whether any particular
(ν, τ) is c-τ stable is determined using Theorems 12, 16, 18, 19, and 35.

To proceed, let
Φ1

def= {(ν, τ)|ν2 > 1 or τ < ν2 ≤ 1} (4.176)

Φ2
def= {(ν, τ)|τ = ν2 = 1} (4.177)

Φ3
def= {(ν, τ)|ν2 = 0 and τ ≥ 0} (4.178)

Φ4
def= {(ν, τ)|ν2 = 1 and τ > 1} (4.179)

Φ5
def= {(ν, τ)|0 < ν2 < 1 and τ = |ν|} (4.180)

With the aid Theorem 19, it is seen that Ψ−, Ψ+, and the five sets defined above are
inclusive and yet mutually exclusive, i.e., any (ν, τ) belongs to one and only one of these
sets. To facilitate the proof, Ψ− and Ψ+, respectively, will be further divided into several
disjoint subsets to be defined immediately.

Let
Ψ(1)

−
def= {(ν, τ)|0 < ν2 < c2 and ν2 ≤ τ <

√
ν2} (4.181)

Ψ(2)
−

def= {(ν, τ)|ν2 = c2 and ν2 ≤ τ <
√
ν2} (4.182)

Ψ(3)
−

def= {(ν, τ)|c2 < ν2 < c3 and ν2 ≤ τ <
√
ν2} (4.183)

and
Ψ(4)

−
def= {(ν, τ)|c3 ≤ ν2 < 1 and ν2 ≤ τ <

√
ν2} (4.184)

Because (ν, τ) ∈ Ψ− ⇔ 0 < ν2 < 1 and ν2 ≤ τ <
√
ν2 (see Theorem 33), one concludes

that (i) Ψ(�)
− , � = 1, 2, 3, 4, are nonempty disjoint subsets of Ψ−, and (ii)

Ψ− = ∪4
�=1Ψ

(�)
− (4.185)

Next let
Ψ(1)

+
def= {(ν, τ)|0 < ν2 ≤ c3 and τ >

√
ν2} (4.186)

and
Ψ(2)

+
def= {(ν, τ)|c3 < ν2 < 1 and τ >

√
ν2} (4.187)

Because (ν, τ) ∈ Ψ+ ⇔ 0 < ν2 < 1 and τ >
√
ν2 (see Theorem 33), one concludes that (i)

Ψ(1)
+ and Ψ(2)

+ , are nonempty disjoint subsets of Ψ+, and (ii)

Ψ+ = Ψ(1)
+ ∪ Ψ(2)

+ (4.188)
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From the above discussion, the sets (i) Φ�, � = 1, 2, 3, 4, 5; (ii) Ψ(�)
− , � = 1, 2, 3, 4; and

(iii) Ψ(1)
+ and Ψ(2)

+ , are inclusive and yet mutually exclusive, i.e., any (ν, τ) must belong to
one and only one of these sets. Part F will be proved by showing that it is valid over each
of these sets in the following case-by-case discussions:

1. (ν, τ) ∈ Φ1. According to Theorem 12, any (ν, τ) ∈ Φ1 is c-τ unstable. Thus part F
is true over Φ1 if one can show that (ν, τ) /∈ Γo if (ν, τ) ∈ Φ1. Because (ν, τ) /∈ Γo

if ν2 > 1 (see Eq. (4.172)), the proof for case 1 is completed if one can show that
(ν, τ) /∈ Γo if τ < ν2 ≤ 1.

To proceed, note that Eq. (4.175) and the facts that τo(0) = 0 and τo(1) = 1 imply
that

ν2 ≤ τo(ν2), ν2 ≤ 1 (4.189)

Thus τ < τo(ν2) if τ < ν2 ≤ 1. As a result of Eq. (4.172), this in turn implies that
(ν, τ) /∈ Γo if τ < ν2 ≤ 1. As such part F is true over Φ1.

2. (ν, τ) ∈ Φ2. According to Theorem 16, any (ν, τ) ∈ Φ2 is c-τ unstable. Also, according
to Eq. (4.172), (ν, τ) /∈ Γo if (ν, τ) ∈ Φ2. Thus part F is true over Φ2.

3. (ν, τ) ∈ Φ3. According to Theorem 18, any (ν, τ) ∈ Φ3 is c-τ stable. Because τo(0) = 0,
Eq. (4.172) implies that (ν, τ) ∈ Γo if (ν, τ) ∈ Φ3. Thus part F is true over Φ3.

4. (ν, τ) ∈ Φ4. According to Theorem 18, any (ν, τ) ∈ Φ4 is c-τ stable. Because τo(1) = 1,
Eq. (4.172) implies that (ν, τ) ∈ Γo if (ν, τ) ∈ Φ4. Thus part F is true over Φ4.

5. (ν, τ) ∈ Φ5. According to Theorem 18, any (ν, τ) ∈ Φ5 is c-τ stable. On the other
hand, Eqs. (4.175) implies that

τo(ν2) <
√
ν2, 0 < ν2 < 1 (4.190)

i.e., τo(ν2) <
√
ν2 = |ν| if 0 < ν2 < 1. This coupled with Eq. (4.172) implies that

(ν, τ) ∈ Γo if (ν, τ) ∈ Φ5. Thus part F is true over Φ5.

6. (ν, τ) ∈ Ψ(1)
− . For this case, we have (i) 0 < ν2 < c2, and (ii) ν2 ≤ τ <

√
ν2. To

proceed, Note that Eqs. (4.160)–(4.162) imply that

I+(ν2) < K+(ν2), 0 < ν2 < c2 (4.191)

ν2 < L−(ν2) < J+(ν2) <
√
ν2, 0 < ν2 < c2 (4.192)

and
I+(ν2) < L−(ν2) < J+(ν2) < L+(ν2), 0 < ν2 < c2 (4.193)

Because Eq. (4.191) contradicts Eq. (4.132), Eq. (4.132) cannot be satisfied by any
(ν, τ) ∈ Ψ(1)

− . Moreover, by using Eq. (4.192), it can be shown that

Ψ(1)
− = Ψ(1,1)

− ∪ Ψ(1,2)
− ∪ Ψ(1,3)

− (4.194)
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where Ψ(1,1)
− , Ψ(1,2)

− , and Ψ(1,3)
− are nonempty disjoint sets defined by

Ψ(1,1)
−

def= {(ν, τ)|0 < ν2 < c2 and ν2 ≤ τ < L−(ν2)} (4.195)

Ψ(1,2)
−

def= {(ν, τ)|0 < ν2 < c2 and L−(ν2) ≤ τ < J+(ν2)} (4.196)

and
Ψ(1,3)

−
def= {(ν, τ)|0 < ν2 < c2 and J+(ν2) ≤ τ <

√
ν2} (4.197)

Thus any (ν, τ) ∈ Ψ(1)
− must fall into one and only one of the following three sub-cases:

(i) (ν, τ) ∈ Ψ(1,1)
− , (ii) (ν, τ) ∈ Ψ(1,2)

− , and (iii) (ν, τ) ∈ Ψ(1,3)
− .

Let (ν, τ) ∈ Ψ(1,1)
− . By using the relation L−(ν2) < J+(ν2) which follows from

Eq. (4.192) or Eq. (4.193), it is seen that Eq. (4.131) cannot be true for the current
sub-case where ν2 ≤ τ < L−(ν2). Also, the second part of Eq. (4.133), i.e., L−(ν2) ≤
τ ≤ L+(ν2), cannot be true for the sub-case. Moreover, for a reason given earlier,
Eq. (4.132) also cannot be true for the sub-case. According to part A of Theorem 32,
the above results imply that any (ν, τ) ∈ Ψ(1,1)

− is c-τ unstable. On the other hand,
because τo(ν2) = L−(ν2) if 0 < ν2 < c2 (see Eqs. (4.156) and (4.171)), one concludes
that τ < τo(ν2) and thus (ν, τ) /∈ Γo if (ν, τ) ∈ Ψ(1,1)

− . As such it has been shown that
part F is true over Ψ(1,1)

− .
Let (ν, τ) ∈ Ψ(1,2)

− . It follows from Eq. (4.193) that Eq. (4.133) is satisfied by any
(ν, τ) with L−(ν2) ≤ τ < J+(ν2). According to part A of Theorem 32 and Eq. (4.196),
this implies that any (ν, τ) in the current sub-case is c-τ stable. On the other hand,
because τo(ν2) = L−(ν2) if 0 < ν2 < c2, one concludes that τ ≥ τo(ν2) and thus
(ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(1,2)

− . As such, it has been shown that part F is true over
Ψ(1,2)

− .
Let (ν, τ) ∈ Ψ(1,3)

− . Obviously Eq. (4.131) is true for the current sub-case where
J+(ν2) ≤ τ <

√
ν2. According to part A of Theorem 32, this implies that any (ν, τ)

in the current sub-case is c-τ stable. On the other hand, because (i) τo(ν2) = L−(ν2)
if 0 < ν2 < c2, and (ii) the relation L−(ν2) < J+(ν2) is a part of Eq. (4.193), one
concludes that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(1,3)

− . As such, it has been
shown that part F is true over Ψ(1,3)

− .
It has been shown that part F is true over each of the three nonempty disjoint sets

Ψ(1,1)
− , Ψ(1,2)

− , and Ψ(1,3)
− . Eq. (4.194) now implies that part F is true over Ψ(1)

− .

7. (ν, τ) ∈ Ψ(2)
− . For this case, we have (i) ν2 = c2, and (ii) ν2 ≤ τ <

√
ν2. To proceed,

Note that Eqs. (4.163) implies that

ν2 < I+(ν2) = K+(ν2) = L−(ν2) < J+(ν2) <
√
ν2 < L+(ν2), ν2 = c2 (4.198)

With the aid of Eq. (4.198), it can be shown that

Ψ(2)
− = Ψ(2,1)

− ∪ Ψ(2,2)
− ∪ Ψ(2,3)

− ∪ Ψ(2,4)
− (4.199)
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where Ψ(2,1)
− , Ψ(2,2)

− , Ψ(2,3)
− , and Ψ(2,4)

− are nonempty disjoint sets defined by

Ψ(2,1)
−

def= {(ν, τ)|ν2 = c2 and ν2 ≤ τ < L−(ν2)} (4.200)

Ψ(2,2)
−

def= {(ν, τ)|ν2 = c2 and τ = L−(ν2)} (4.201)

Ψ(2,3)
−

def= {(ν, τ)|ν2 = c2 and L−(ν2) < τ < J+(ν2)} (4.202)

and
Ψ(2,4)

−
def= {(ν, τ)|ν2 = c2 and J+(ν2) ≤ τ <

√
ν2} (4.203)

Thus any (ν, τ) ∈ Ψ(2)
− must fall into one and only one of the following four sub-cases:

(i) (ν, τ) ∈ Ψ(2,1)
− , (ii) (ν, τ) ∈ Ψ(2,2)

− , (iii) (ν, τ) ∈ Ψ(2,3)
− , and (iv) (ν, τ) ∈ Ψ(2,4)

− .
Let (ν, τ) ∈ Ψ(2,1)

− . By using the relation L−(ν2) < J+(ν2) which follows from
Eq. (4.198), it is seen that Eq. (4.131) cannot be true for the current sub-case where
ν2 ≤ τ < L−(ν2). Moreover, by using the relation I+(ν2) = K+(ν2) = L−(ν2) which
also follows from Eq. (4.198), it is seen that Eq. (4.132) also cannot be true for the
sub-case. In addition, the second part of Eq. (4.133) also cannot be true for the sub-
case. According to part A of Theorem 32, this implies that any (ν, τ) ∈ Ψ(2,1)

− is c-τ
unstable. On the other hand, because τo(ν2) = L−(ν2) if ν2 = c2, one concludes that
τ < τo(ν2) and thus (ν, τ) /∈ Γo if (ν, τ) ∈ Ψ(2,1)

− . As such it has been shown that part
F is true over Ψ(2,1)

− .
Let (ν, τ) ∈ Ψ(2,2)

− . By using the relation I+(ν2) = K+(ν2) = L−(ν2) which follows
from Eq. (4.198), it is seen that Eq. (4.132) is true for the current sub-case where
τ = L−(ν2). According to part A of Theorem 32, this implies that any (ν, τ) ∈ Ψ(2,2)

−
is c-τ stable. On the other hand, because τo(ν2) = L−(ν2) if ν2 = c2, one concludes
that τ = τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(2,2)

− . As such it has been shown that
part F is true over Ψ(2,2)

− .
Let (ν, τ) ∈ Ψ(2,3)

− . By using the relation I+(ν2) = L−(ν2) < J+(ν2) < L+(ν2)
which follows from Eq. (4.198), it is seen that Eq. (4.133) is true for the current case
where L−(ν2) < τ < J+(ν2). According to part A of Theorem 32, this implies that
any (ν, τ) ∈ Ψ(2,3)

− is c-τ stable. On the other hand, because τo(ν2) = L−(ν2) if
ν2 = c2, one concludes that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(2,3)

− . As such
it has been shown that part F is true over Ψ(2,3)

− .
Let (ν, τ) ∈ Ψ(2,4)

− . Obviously Eq. (4.131) is true for the current sub-case where
J+(ν2) ≤ τ <

√
ν2. According to part A of Theorem 32, this implies that any (ν, τ) in

the current sub-case is c-τ stable. On the other hand, because (i) τo(ν2) = L−(ν2) if
ν2 = c2, and (ii) the relation L−(ν2) < J+(ν2) is a part of Eq. (4.198), one concludes
that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(2,4)

− . As such, it has been shown
that part F is true over Ψ(2,4)

− .
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It has been shown that part F is true over each of the four nonempty disjoint sets
Ψ(2,1)

− , Ψ(2,2)
− , Ψ(2,3)

− , and Ψ(2,4)
− . Eq. (4.199) now implies that part F is true over Ψ(2)

− .

8. (ν, τ) ∈ Ψ(3)
− . For this case, we have (i) c2 < ν2 < c3, and (ii) ν2 ≤ τ <

√
ν2. To

proceed, Note that Eqs. (4.164) implies that

ν2 < K+(ν2) < L−(ν2) < I+(ν2) < J+(ν2) <
√
ν2 < L+(ν2), c2 < ν2 < c3

(4.204)
With the aid of Eq. (4.204), it can be shown that

Ψ(3)
− = Ψ(3,1)

− ∪ Ψ(3,2)
− ∪ Ψ(3,3)

− ∪ Ψ(3,4)
− (4.205)

where Ψ(3,1)
− , Ψ(3,2)

− , Ψ(3,3)
− , and Ψ(3,4)

− are nonempty disjoint sets defined by

Ψ(3,1)
−

def= {(ν, τ)|c2 < ν2 < c3 and ν2 ≤ τ < K+(ν2)} (4.206)

Ψ(3,2)
−

def= {(ν, τ)|c2 < ν2 < c3 and K+(ν2) ≤ τ ≤ I+(ν2)} (4.207)

Ψ(3,3)
−

def= {(ν, τ)|c2 < ν2 < c3 and I+(ν2) < τ < J+(ν2)} (4.208)

and
Ψ(3,4)

−
def= {(ν, τ)|c2 < ν2 < c3 and J+(ν2) ≤ τ <

√
ν2} (4.209)

Thus any (ν, τ) ∈ Ψ(3)
− must fall into one and only one of the following four sub-cases:

(i) (ν, τ) ∈ Ψ(3,1)
− , (ii) (ν, τ) ∈ Ψ(3,2)

− , (iii) (ν, τ) ∈ Ψ(3,3)
− , and (iv) (ν, τ) ∈ Ψ(3,4)

− .
Let (ν, τ) ∈ Ψ(3,1)

− . By using the relation K+(ν2) < J+(ν2) which follows from
Eq. (4.204), it is seen that Eq. (4.131) cannot be true for the current sub-case where
ν2 ≤ τ < K+(ν2). Moreover, obviously Eq. (4.132) is also not true for the sub-case.
In addition, by using the relation K+(ν2) < L−(ν2) < I+(ν2) which also follows from
Eq. (4.204), one concludes that Eq. (4.133) also can not be true for the sub-case.
According to part A of Theorem 32, the above results imply that any (ν, τ) ∈ Ψ(3,1)

−
is c-τ unstable. On the other hand, because τo(ν2) = K+(ν2) if c2 < ν2 < c3, one
concludes that τ < τo(ν2) and thus (ν, τ) /∈ Γo if (ν, τ) ∈ Ψ(3,1)

− . As such it has been
shown that part F is true over Ψ(3,1)

− .
Let (ν, τ) ∈ Ψ(3,2)

− . Obviously Eq. (4.132) is true for the current sub-case where
K+(ν2) ≤ τ ≤ I+(ν2). According to part A of Theorem 32, this implies that any
(ν, τ) ∈ Ψ(3,2)

− is c-τ stable. On the other hand, because τo(ν2) = K+(ν2) if c2 < ν2 <

c3, one concludes that τ ≥ τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(3,2)
− . As such it

has been shown that part F is true over Ψ(3,2)
− .

Let (ν, τ) ∈ Ψ(3,3)
− . By using the relation L−(ν2) < I+(ν2) < J+(ν2) < L+(ν2)

which follows from Eq. (4.204), it is seen that Eq. (4.133) is true for the current case
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where I+(ν2) < τ < J+(ν2). According to part A of Theorem 32, this implies that
any (ν, τ) ∈ Ψ(3,3)

− is c-τ stable. On the other hand, because (i) τo(ν2) = K+(ν2)
if c2 < ν2 < c3, and (ii) the relation K+(ν2) < I+(ν2) is a part of Eq. (4.204), one
concludes that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(3,3)

− . As such it has been
shown that part F is true over Ψ(3,3)

− .
Let (ν, τ) ∈ Ψ(3,4)

− . Obviously Eq. (4.131) is true for the current sub-case where
J+(ν2) ≤ τ <

√
ν2. According to part A of Theorem 32, this implies that any (ν, τ)

in the current sub-case is c-τ stable. On the other hand, because (i) τo(ν2) = K+(ν2)
if c2 < ν2 < c3, and (ii) the relation K+(ν2) < J+(ν2) is a part of Eq. (4.204), one
concludes that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(3,4)

− . As such, it has been
shown that part F is true over Ψ(3,4)

− .
It has been shown that part F is true over each of the four nonempty disjoint sets

Ψ(3,1)
− , Ψ(3,2)

− , Ψ(3,3)
− , and Ψ(3,4)

− . Eq. (4.205) now implies that part F is true over Ψ(3)
− .

9. (ν, τ) ∈ Ψ(4)
− . For this case, we have (i) c3 ≤ ν2 < 1, and (ii) ν2 ≤ τ <

√
ν2. To

proceed, Note that Eqs. (4.165)–(4.168) implies that

ν2 < K+(ν2) <
√
ν2 ≤ J+(ν2) ≤ I+(ν2) < L+(ν2), c3 ≤ ν2 < 1 (4.210)

With the aid of Eq. (4.210), it can be shown that

Ψ(4)
− = Ψ(4,1)

− ∪ Ψ(4,2)
− (4.211)

where Ψ(4,1)
− and Ψ(4,2)

− are nonempty disjoint sets defined by

Ψ(4,1)
−

def= {(ν, τ)|c3 ≤ ν2 < 1 and ν2 ≤ τ < K+(ν2)} (4.212)

and
Ψ(4,2)

−
def= {(ν, τ)|c3 ≤ ν2 < 1 and K+(ν2) ≤ τ <

√
ν2} (4.213)

Thus any (ν, τ) ∈ Ψ(4)
− must fall into one and only one of the following two sub-cases:

(i) (ν, τ) ∈ Ψ(4,1)
− and (ii) (ν, τ) ∈ Ψ(4,2)

− .
Let (ν, τ) ∈ Ψ(4,1)

− . By using the relation K+(ν2) < J+(ν2) ≤ I+(ν2) which follows
from Eq. (4.210), it is seen that none of Eqs. (4.131)–(4.133) is true for the current
sub-case where ν2 ≤ τ < K+(ν2). According to part A of Theorem 32, this implies
that any (ν, τ) ∈ Ψ(4,1)

− is c-τ unstable. On the other hand, because τo(ν2) = K+(ν2)
if c3 ≤ ν2 < 1, one concludes that τ < τo(ν2) and thus (ν, τ) /∈ Γo if (ν, τ) ∈ Ψ(4,1)

− .
As such it has been shown that part F is true over Ψ(4,1)

− .
Let (ν, τ) ∈ Ψ(4,2)

− . By using the relation K+(ν2) <
√
ν2 ≤ I+(ν2) which follows

from Eq. (4.210), it is seen that Eq. (4.132) is true for the current sub-case where
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K+(ν2) ≤ τ <
√
ν2. According to part A of Theorem 32, this implies that any

(ν, τ) ∈ Ψ(4,2)
− is c-τ stable. On the other hand, because τo(ν2) = K+(ν2) if c3 ≤ ν2 <

1, one concludes that τ ≥ τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(4,2)
− . As such it has

been shown that part F is true over Ψ(4,2)
− .

It has been shown that part F is true over each of the two nonempty disjoint sets
Ψ(4,1)

− and Ψ(4,2)
− . Eq. (4.211) now implies that part F is true over Ψ(4)

− .

10. (ν, τ) ∈ Ψ(1)
+ . For this case, we have (i) 0 < ν2 ≤ c3, and (ii) τ >

√
ν2. To proceed,

Note that Eqs. (4.160)–(4.165) imply that

I+(ν2) ≤
√
ν2, 0 < ν2 ≤ c3 (4.214)

K+(ν2) <
√
ν2, 0 < ν2 ≤ c3 (4.215)

and
L−(ν2) <

√
ν2, 0 < ν2 ≤ c3 (4.216)

By using Eqs. (4.214) and (4.215), one concludes that Eq. (4.135) is true for the current
case where τ >

√
ν2. According to part B of Theorem 32, this implies that any (ν, τ)

in the current case is c-τ stable. On the other hand, because (i) τo(ν2) = L−(ν2) if
0 < ν2 ≤ c2, and (ii) τo(ν2) = K+(ν2) if c2 ≤ ν2 ≤ c3, Eqs. (4.215) and (4.216) imply
that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(1)

+ . As such, it has been shown that
part F is true over Ψ(1)

+ .

11. (ν, τ) ∈ Ψ(2)
+ . For this case, we have (i) c3 < ν2 < 1, and (ii) τ >

√
ν2. To proceed,

Note that Eqs. (4.166)–(4.168) imply that

K+(ν2) <
√
ν2 < J+(ν2) < I+(ν2), c3 < ν2 < 1 (4.217)

and
L−(ν2) < J+(ν2) < I+(ν2) < L+(ν2), c3 < ν2 < 1 (4.218)

By using Eq. (4.217), one has

Ψ(2)
+ = Ψ(2,1)

+ ∪ Ψ(2,2)
+ ∪ Ψ(2,3)

+ (4.219)

where Ψ(2,1)
+ , Ψ(2,2)

+ , and Ψ(2,3)
+ are nonempty disjoint sets defined by

Ψ(2,1)
+

def= {(ν, τ)|c3 < ν2 < 1 and
√
ν2 < τ ≤ J+(ν2)} (4.220)

Ψ(2,2)
+

def= {(ν, τ)|c3 < ν2 < 1 and J+(ν2) < τ < I+(ν2)} (4.221)

and
Ψ(2,3)

+
def= {(ν, τ)|c3 < ν2 < 1 and τ ≥ I+(ν2)} (4.222)
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Thus any (ν, τ) ∈ Ψ(2)
+ must fall into one and only one of the following three sub-cases:

(i) (ν, τ) ∈ Ψ(2,1)
+ , (ii) (ν, τ) ∈ Ψ(2,2)

+ , and (iii) (ν, τ) ∈ Ψ(2,3)
+ .

Let (ν, τ) ∈ Ψ(2,1)
+ . Eq. (4.134) is true for any (ν, τ) in the current sub-case where√

ν2 < τ ≤ J+(ν2). According to part B of Theorem 32, this implies that the any
(ν, τ) ∈ Ψ(2,1)

+ is c-τ stable. On the other hand, because (i) τo(ν2) = K+(ν2) if
c3 < τ < 1, and (ii) the relation K+(ν2) <

√
ν2 is a part of Eq. (4.217), one concludes

that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(2,1)
+ . As such it has been shown that

part F is true over Ψ(2,1)
+ .

Let (ν, τ) ∈ Ψ(2,2)
+ . By using Eq. (4.218), one concludes that Eq. (4.136) is true

for the current case where J+(ν2) < τ < I+(ν2). According to part B of Theorem
32, this implies that any (ν, τ) ∈ Ψ(2,2)

+ is c-τ stable. On the other hand, because (i)
τo(ν2) = K+(ν2) if c3 < ν2 < 1, and (ii) the relation K+(ν2) < J+(ν2) is a part of
Eq. (4.217), one concludes that τ > τo(ν2) and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(2,2)

+ . As
such it has been shown that part F is true over Ψ(2,2)

+ .
Let (ν, τ) ∈ Ψ(2,3)

+ . By using the relation K+(ν2) < I+(ν2) which follows from
Eq. (4.217), one concludes that Eq. (4.135) is true for the current sub-case where
τ ≥ I+(ν2). According to part B of Theorem 32, this implies that any (ν, τ) ∈ Ψ(2,3)

+

is c-τ stable. On the other hand, because (i) τo(ν2) = K+(ν2) if c3 < ν2 < 1, and (ii)
the relation K+(ν2) < I+(ν2) is a part of Eq. (4.217), one concludes that τ > τo(ν2)
and thus (ν, τ) ∈ Γo if (ν, τ) ∈ Ψ(2,3)

+ . As such, it has been shown that part F is true
over Ψ(2,3)

+ .
It has been shown that part F is true over each of the three nonempty disjoint sets

Ψ(2,1)
+ , Ψ(2,2)

+ , and Ψ(2,3)
+ . Eq. (4.219) now implies that part F is true over Ψ(2)

+ .

It has been established that part F is true over each of the sets mentioned in the
paragraph immediately following Eq. (4.188). Because any (ν, τ) must belong to one and
only one of these sets, the proof of part F is completed.

Finally, with the aid of Theorems 4 and 16, one can obtain part G from part F. QED.

As promised earlier, a proof for Theorem 34 will be provided in the remainder of the
paper. As a preliminary, we have Theorem 36.

Theorem 36. In the domain 0 < x < 1, (A) I+(x), J+(x), K+(x), and L−(x) are
strictly monotonically increasing while L+(x) is strictly monotonically decreasing. More-
over, we have (B)

3 > I+(x) > 0, 0 < x < 1 (4.223)

3 > J+(x) > 0, 0 < x < 1 (4.224)

1 > K+(x) > 0, 0 < x < 1 (4.225)

3 > L−(x) > 0, 0 < x < 1 (4.226)
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and
L+(x) > 3, 0 < x < 1 (4.227)

Proof . Let f ′(x) def= df(x)/dx for any function f of x. Then (i) Eqs. (4.91) and (4.98)
imply that

I ′+(x) =
3x− 2 + 2

√
3x2 − 3x+ 1

x2
√

3x2 − 3x+ 1
> 0, 0 < x < 1 (4.228)

(ii) Eqs. (4.92) and (4.100) imply that

J ′
+(x) =

−x3 + 6x2 − x+ 2 + 4
√

2(x3 − x+ 2)

(2 − x)2
√

2(x3 − x+ 2)

=
x2(1 − x) + 5x2 + 1 + (1 − x) + 4

√
2(x3 − x+ 2)

(2 − x)2
√

2(x3 − x+ 2)
> 0, 0 < x < 1

(4.229)

(iii) Eqs. (4.114) and (4.118) imply that

K ′
+(x) =

√
1 − 2x+ 5x2 − (1 − x)
2x2

√
1 − 2x+ 5x2

> 0, 0 < x < 1 (4.230)

(iv) Eqs. (4.122) and (4.126) imply that

L′
−(x) =

2
[
4 − x− 2

√
2(2 − x− x2)

]

x2
√

2(2 − x− x2)
> 0, 0 < x < 1 (4.231)

and (v) Eqs. (4.122) and (4.126) imply that

L′
+(x) = −

2
[
4 − x+ 2

√
2(2 − x− x2)

]

x2
√

2(2 − x− x2)
< 0, 0 < x < 1 (4.232)

Thus part A is true.
Moreover, by using (i) Eqs. (4.91), (4.92), (4.114), and (4.122), and (ii) L’hopital’s

rule, one has (i)

lim
x→1−

I+(x) = lim
x→1−

J+(x) = lim
x→1−

L−(x) = lim
x→1−

L+(x) = 3, and lim
x→1−

K+(x) = 1

(4.233)
(ii)

lim
x→0+

I+(x) = lim
x→0+

(
3 +

6x− 3√
3x2 − 3x+ 1

)
= 3 + (−3) = 0 (4.234)
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(iii)
lim

x→0+
J+(x) = 0 (4.235)

(iv)

lim
x→0+

K+(x) = lim
x→0+

1
2

(
1 +

5x− 1√
1 − 2x+ 5x2

)
=

1
2
(1 − 1) = 0 (4.236)

and (v)

lim
x→0+

L−(x) = lim
x→0+

[
−1 +

2(1 + 2x)√
2(2 − x− x2)

]
= −1 + 1 = 0 (4.237)

part B now follows from Part A and Eqs. (4.233)–(4.237). QED

An immediate result of Theorem 36 and the fact that 0 < x <
√
x < 1 if 0 < x < 1 is

given in Theorem 37.

Theorem 37. We have

x <
√
x < L+(x), I+(x) < L+(x), J+(x) < L+(x),

K+(x) < L+(x) and L−(x) < L+(x), 0 < x < 1
(4.238)

Theorem 37 is but one of many algebraic relations that are needed in the proof of
Theorem 34. Note that, in establishing other needed relations, several inequalities that
involve the four prinicipal square roots that appear in the definitions of I±(x), J±(x),
K±(x), and L±(x), i.e.,

√
3x2 − 3x+ 1 > 0, −∞ < x < +∞ (4.239)

√
2(x3 − x+ 2) > 0, 0 < x < 2 (4.240)

√
1 − 2x+ 5x2 > 0, −∞ < x < +∞ (4.241)

and √
2(2 − x− x2) > 0, −2 < x < 1 (4.242)

(which follow from Eqs. (4.97), (4.100), (4.117), and (4.124), respectively) will be used
repeatedly. Also to be used often is the following algebraic property:

Property I . Let a ≥ 0 and b ≥ 0. Then

a2 − b2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 ⇔ a− b > 0

= 0 ⇔ a− b = 0

< 0 ⇔ a− b < 0

(4.243)
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With the above preparations, a set of relations will be given in Theorems 38–48.

Theorem 38. We have

x− I+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < 3 − 2
√

2

= 0 if x = 3 − 2
√

2

< 0 if 3 − 2
√

2 < x < 1

(4.244)

Proof . Let 0 < x < 1 throughout the proof. Then Eq. (4.91) implies that

x− I+(x) =
x2 − 3x+ 2 − 2

√
3x2 − 3x+ 1

x
(4.245)

With the aid of Property I, Eq. (4.244) is a result of Eq. (4.245) and the following relations:
(i) Eq. (4.239); (ii)

x2 − 3x+ 2 = (x− 1)(x− 2) > 0 (4.246)

(iii)

(x2 − 3x+ 2)2 −
(
2
√

3x2 − 3x+ 1
)2

= x2(x2 − 6x+ 1)

= x2
[
x− (3 + 2

√
2)
] [
x− (3 − 2

√
2)
] (4.247)

and (iv) 0 < 3 − 2
√

2 < 1 < 3 + 2
√

2. QED.

Theorem 39. We have

x < K+(x), 0 < x < 1 (4.248)

Proof . Let 0 < x < 1 throughout the proof. Then Eq. (4.114) implies that

K+(x) − x =
√

1 − 2x+ 5x2 − (2x2 − x+ 1)
2x

(4.249)

With the aid of Property I, Eq. (4.248) is a result of Eq. (4.249) and the following relations:
(i) Eq. (4.241); (ii)

2x2 − x+ 1 = 2(x− 1/4)2 + 7/8 ≥ 7/8 (4.250)

and (iii) (√
1 − 2x+ 5x2

)2

− (2x2 − x+ 1)2 = 4x3(1 − x) > 0 (4.251)

QED.
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Theorem 40. Let c3 be the constant defined in Eq. (4.157). Then

√
x− I+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < c3

= 0 if x = c3

< 0 if c3 < x < 1

(4.252)

Proof . Let 0 < x < 1 throughout the proof. Then Eq. (4.91) implies that

√
x− I+(x) =

x
√
x− 3x+ 2 − 2

√
3x2 − 3x+ 1

x
(4.253)

With the aid of Property I, Eq. (4.252) is a result of Eq. (4.253) and the following relations:
(i) Eq. (4.239); (ii)

x
√
x− 3x+ 2 =

(
1 −√

x
)[

1 + 2
√
x+ (1 − x)

]
> 0 (4.254)

(iii)

(
x
√
x− 3x+ 2

)2 − (
2
√

3x2 − 3x+ 1
)2 = x3 − 6x5/2 − 3x2 + 4x3/2

= x3/2
(√
x+ 1

)(√
x− 7 +

√
33

2

)(√
x− 7 −√

33
2

) (4.255)

(iv) 0 <
(
7 −√

33
)
/2 < 1 <

(
7 +

√
33
)
/2; and (v) c3 =

[(
7 −√

33
)
/2
]2

. QED.

Theorem 41. Let c3 be the constant defined in Eq. (4.157). Then

√
x− J+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < c3

= 0 if x = c3

< 0 if c3 < x < 1

(4.256)

Proof . Let 0 < x < 1 throughout the proof. Then Eq. (4.92) implies that

√
x− J+(x) =

−x√x− 3x+ 2
√
x+ 2 −√

2(x3 − x+ 2)
2 − x

(4.257)

With the aid of Property I, Eq. (4.256) is a result of Eq. (4.257) and the following relations:
(i) Eq. (4.240); (ii)

−x√x− 3x+ 2
√
x+ 2 =

(
1 −√

x
)(
x+ 4

√
x+ 2

)
> 0 (4.258)
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(iii)

(−x√x− 3x+ 2
√
x+ 2

)2 −
[√

2(x3 − x+ 2)
]2

= −x3 + 6x5/2 + 5x2 − 16x3/2 − 6x+ 8
√
x

=
√
x(2 − x)

(√
x+ 1

)(√
x− 7 +

√
33

2

)(√
x− 7 −√

33
2

)
(4.259)

(iv) 0 <
(
7 −√

33
)
/2 < 1 <

(
7 +

√
33
)
/2; and (v) c3 =

[(
7 −√

33
)
/2
]2

. QED.

Theorem 42. We have

K+(x) <
√
x, 0 < x < 1 (4.260)

Proof . Let 0 < x < 1 throughout the proof. Then Eq. (4.114) implies that

√
x−K+(x) =

2x
√
x− x+ 1 −√

1 − 2x+ 5x2

2x
(4.261)

With the aid of Property I, Eq. (4.260) is a result of Eq. (4.261) and the following relations:
(i) Eq. (4.241); (ii)

2x
√
x− x+ 1 = 2x

√
x+ (1 − x) > 0 (4.262)

and (iii)

(
2x

√
x− x+ 1

)2 −
(√

1 − 2x+ 5x2
)2

= 4x
√
x(1 − x)

(
1 −√

x
)
> 0 (4.263)

QED.

Theorem 43. Let c4 be the constant defined in Eq. (4.158). Then

√
x− L−(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < c4

= 0 if x = c4

< 0 if c4 < x < 1

(4.264)

Proof . Unless specified otherwise. Let 0 < x < 1 in this proof. Then Eq. (4.122)
implies that

√
x− L−(x) =

2
√

2(2 − x− x2) − (4 − x− x
√
x)

x
(4.265)
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To proceed, note that

[
2
√

2(2 − x− x2)
]2

− (
4 − x− x

√
x
)2 = −x√x g(x) (4.266)

where
g(x) def= x

√
x+ 2x+ 9

√
x− 8, x ≥ 0 (4.267)

Because (i)

g′(x) = 3
√
x/2 + 2 + 9/(2

√
x) = 3/(2

√
x)
[
(
√
x+ 2/3)2 + 23/9

]
> 0, x > 0 (4.268)

and (ii)
g(0) = −8 and g(1) = 4 (4.269)

one concludes that g(x) is strictly monotonically increasing in the interval 0 < x < 1 and
there is one and only one real root of g(x) = 0 in this interval. By using the standard
formula for the roots of a cubic equation, it can be shown that this root is given by x = c4.
Moreover, Eqs. (4.268) and (4.269) imply that: (i) g(x) < 0 if 0 < x < c4; (ii) g(x) = 0 if
x = c4; and (iii) g(x) > 0 if c4 < x < 1. As such Eq. (4.266) implies that

[
2
√

2(2 − x− x2)
]2

− (
4 − x− x

√
x
)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < c4

= 0 if x = c4

< 0 if c4 < x < 1

(4.270)

With the aid of Property I, Eq. (4.264) is a result of Eqs. (4.265) and (4.270), and the the
following relations: (i) Eq. (4.242); and (ii)

4 − x− x
√
x = 2 + (1 − x) +

(
1 − x

√
x
)
> 2, 0 < x < 1 (4.271)

QED.

Theorem 44. We have

L−(x) < J+(x), 0 < x < 1 (4.272)

Proof . Let 0 < x < 1 throughout this proof. Then Eqs. (4.92) and (4.122) imply that

J+(x) − L−(x) =
x
√

2(x3 − x+ 2) + 2(2 − x)
√

2(2 − x− x2) − (8 − 4x− 2x2)
x(2 − x)

(4.273)

Let

β(x) def= x
√

2(x3 − x+ 2) + 2(2 − x)
√

2(2 − x− x2) + (8 − 4x− 2x2) (4.274)
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and
β±(x) def= 4

√
(x3 − x+ 2)(2 + x) ±√

1 − x (8 + 3x− x2) (4.275)

Then (i)

[
J+(x) − L−(x)

]
β(x)

=
8x(2 − x)

√
(x3 − x+ 2)(1 − x)(2 + x) + 2x5 − 12x4 + 6x3 + 36x2 − 32x

x(2 − x)

=
8x(2 − x)

√
(x3 − x+ 2)(1 − x)(2 + x) − 2x(1 − x)(2 − x)(8 + 3x− x2)

x(2 − x)

= 2
√

1 − x β−(x)

(4.276)

and (ii)
β−(x)β+(x) = x5 + 9x4 + 31x3 + 39x2 + 16x (4.277)

Thus

[
J+(x) − L−(x)

]
β(x)β+(x) = 2

√
1 − x(x5 + 9x4 + 31x3 + 39x2 + 16x) (4.278)

By using (i) Eqs. (4.240) and (4.242); (ii)
√

(x3 − x+ 2)(2 + x) > 0; (iii)

8 − 4x− 2x2 = 2 + 4(1 − x) + 2(1 − x2) > 2 (4.279)

and (iv)
8 + 3x− x2 = 7 + 3x+ (1 − x2) > 7 (4.280)

it follows from Eqs. (4.274) and (4.275) that

β(x) > 0 and β+(x) > 0, 0 < x < 1 (4.281)

Eq. (4.272) is a result of Eq. (4.281) and the fact that the expression on the right side of
Eq. (4.278) is positive everywhere in the interval 0 < x < 1. QED

Theorem 45. We have

K+(x) − I+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < 3/11

= 0 if x = 3/11

< 0 if 3/11 < x < 1

(4.282)
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Proof . Eqs. (4.91) and (4.114) imply that

K+(x) − I+(x) =
(3 − 5x) − (

4
√

3x2 − 3x+ 1 −√
1 − 2x+ 5x2

)
2x

, 0 < x < 1 (4.283)

By using (i) Eqs. (4.239) and (4.241), and (ii)

(
4
√

3x2 − 3x+ 1
)2

−
(√

1 − 2x+ 5x2
)2

= 43x2 − 46x+ 15

= 43
[
(x− 23/43)2 + 116/(43)2

] ≥ 116/43, −∞ < x <∞
(4.284)

an application of Property I leads to the conclusion

4
√

3x2 − 3x+ 1 −
√

1 − 2x+ 5x2 > 0, −∞ < x < +∞ (4.285)

Moreover, we have

3 − 5x

⎧⎨
⎩

≤ 0 if x ≥ 3/5

> 0 if x < 3/5
(4.286)

Combining Eqs. (4.283), (4.285) and (4.286), one has

K+(x) − I+(x) < 0, 3/5 ≤ x < 1 (4.287)

To proceed, let

ξ(x) def=
1
2

(
3 − 5x+ 4

√
3x2 − 3x+ 1 −

√
1 − 2x+ 5x2

)
, 0 < x < 1 (4.288)

and

ξ±(x) def= 2
√

(3x2 − 3x+ 1)(1 − 2x+ 5x2) ± (7x2 − 5x+ 2), 0 < x < 1 (4.289)

Then Eqs. (4.285) and (4.286) imply that

ξ(x) > 0, 0 < x < 3/5 (4.290)

In addition, by using (i)
√

(3x2 − 3x+ 1)(1 − 2x+ 5x2) > 0, −∞<x<+∞ (which follows
from Eqs. (4.239) and (4.241)); and (ii)

7x2 − 5x+ 2 = 7
[
(x− 5/14)2 + 31/196

] ≥ 31/28, −∞ < x < +∞ (4.291)

one has
ξ+(x) > 0, 0 < x < 1 (4.292)
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Combining Eqs. (4.290) and (4.292), one arrives at the conclusion:

ξ(x) ξ+(x) > 0, 0 < x < 3/5 (4.293)

Next, Eqs. (4.283), (4.288), and (4.289) imply that (i)

[K+(x) − I+(x)] ξ(x) =
ξ−(x)
x

, 0 < x < 1 (4.294)

and (ii)

ξ−(x) ξ+(x) = 11x4 − 14x3 + 3x2 = 11x2(x− 1)(x− 3/11), 0 < x < 1 (4.295)

Thus

[K+(x) − I+(x)] ξ(x)ξ+(x) = 11x(x− 1)(x− 3/11), 0 < x < 1 (4.296)

It follows from Eqs. (4.293) and (4.296) that

K+(x) − I+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < 3/11

= 0 if x = 3/11

< 0 if 3/11 < x < 3/5

(4.297)

Eq. (4.282) is an immediate result of Eqs. (4.287) and (4.297). QED.

Theorem 46. We have

L−(x) − I+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < 3/11

= 0 if x = 3/11

< 0 if 3/11 < x < 1

(4.298)

Proof . Eqs. (4.91) and (4.122) imply that

L−(x) − I+(x) =
2
x

(
3 − 2x−

√
2(2 − x− x2) −

√
3x2 − 3x+ 1

)
, 0 < x < 1 (4.299)

By using Eq. (4.299) and the definitions

µ(x) def=
1
2

(
3 − 2x+

√
2(2 − x− x2) +

√
3x2 − 3x+ 1

)
, 0 < x < 1 (4.300)
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and

µ±(x) def= 3x2 − 7x+ 4 ± 2
√

2(2 − x− x2)(3x2 − 3x+ 1), 0 < x < 1 (4.301)

one has

[L−(x) − I+(x)]µ(x) =
µ−(x)
x

, 0 < x < 1 (4.302)

and

µ−(x)µ+(x) = 33x4 − 42x3 + 9x2 = 33x2(x− 1)(x− 3/11), 0 < x < 1 (4.303)

In turn, Eqs. (4.302) and (4.303) imply that

[L−(x) − I+(x)]µ(x)µ+(x) = 33x(x− 1)(x− 3/11), 0 < x < 1 (4.304)

By using (i) Eqs. (4.239) and (4.242); (ii) 3 − 2x > 0 if x < 3/2; and (iii)

3x2 − 7x+ 4 = 3(x− 1)(x− 4/3) > 0, x < 1 or x > 4/3 (4.305)

Eqs. (4.300) and (4.301) imply that

µ(x) > 0 and µ+(x) > 0, 0 < x < 1 (4.306)

Eq. (4.298) is an immediate result of Eqs. (4.304) and (4.306). QED.

Theorem 47. We have

L−(x) −K+(x)

⎧⎨
⎩
> 0 if 0 < x < 3/11 or 3/11 < x < 1

= 0 if x = 3/11
(4.307)

Proof . Eqs. (4.114) and (4.122) imply that

L−(x) −K+(x) =
9 − 3x− 4

√
2(2 − x− x2) −√

1 − 2x+ 5x2

2x
, 0 < x < 1 (4.308)

By using Eq. (4.308) and the definitions

ψ(x) def=
1
2

(
9 − 3x+ 4

√
2(2 − x− x2) +

√
1 − 2x+ 5x2

)
, 0 < x < 1 (4.309)

and

ψ±(x) def= 9x2 − 5x+ 4 ± 2
√

2(2 − x− x2)(1 − 2x+ 5x2), 0 < x < 1 (4.310)
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one has

[L−(x) −K+(x)]ψ(x) =
ψ−(x)
x

, 0 < x < 1 (4.311)

and

ψ−(x)ψ+(x) = 121x4 − 66x3 + 9x2 = 121x2(x− 3/11)2, 0 < x < 1 (4.312)

In turn, Eqs. (4.311) and (4.312) imply that

[L−(x) −K+(x)]ψ(x)ψ+(x) = 121x(x− 3/11)2, 0 < x < 1 (4.313)

By using (i) Eqs. (4.241) and (4.242); (ii) 9 − 3x > 0 if x < 3; and (iii)

9x2 − 5x+ 4 = 9
[
(x− 5/18)2 + 119/324

] ≥ 119/36, −∞ < x < +∞ (4.314)

Eqs. (4.309) and (4.310) imply that

ψ(x) > 0 and ψ+(x) > 0, 0 < x < 1 (4.315)

Eq. (4.307) is an immediate result of Eqs. (4.313) and (4.315). QED.

Theorem 48. Let c3 be the constant defined in Eq. (4.157). Then we have

J+(x) − I+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < c3

= 0 if x = c3

< 0 if c3 < x < 1

(4.316)

Proof . Eqs. (4.91) and (4.92) imply that

J+(x) − I+(x) =
6x2 − 10x+ 4 −

[
2(2 − x)

√
3x2 − 3x+ 1 − x

√
2(x3 − x+ 2)

]

x(2 − x)
,

0 < x < 1

(4.317)
To proceed, note that Eq. (4.239) implies that

2(2 − x)
√

3x2 − 3x+ 1 > 0, x < 2 (4.318)

Also Eq. (4.240) implies that

x
√

2(x3 − x+ 2) > 0, 0 < x < 2 (4.319)
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Moreover, we have

[
2(2 − x)

√
3x2 − 3x+ 1

]2
−
[
x
√

2(x3 − x+ 2)
]2

= −2x5 + 12x4 − 58x3 + 96x2 − 64x+ 16

= 2(1 − x)(x4 − 5x3 + 24x2 − 24x+ 8)

= 2(1 − x)
[
x2(x2 − 5x+ 6) + 2(9x2 − 12x+ 4)

]

= 2(1 − x)
[
x2(x− 2)(x− 3) + 2(3x− 2)2

]
> 0, 0 < x < 1

(4.320)

With the aid of Eqs. (4.318)–(4.320), an application of Property I leads to the conclusion

2(2 − x)
√

3x2 − 3x+ 1 − x
√

2(x3 − x+ 1) > 0, 0 < x < 1 (4.321)

Next note that
x(2 − x) > 0, 0 < x < 2 (4.322)

and

6x2 − 10x+ 4 = 6(x− 1)(x− 2/3)

⎧⎨
⎩

≤ 0 if 2/3 ≤ x ≤ 1

> 0 if x < 2/3 or x > 1
(4.323)

By combining Eq. (4.317) with Eqs. (4.321)–(4.323), one concludes that

J+(x) − I+(x) < 0, 2/3 ≤ x < 1 (4.324)

To study the case where 0 < x < 2/3, let

η(x) def=
1
2

[
6x2 − 10x+ 4 + 2(2 − x)

√
3x2 − 3x+ 1 − x

√
2(x3 − x+ 2)

]
, 0 < x < 1

(4.325)
and

η±(x) def= 2
√

2
√

(3x2 − 3x+ 1)(x3 − x+ 2) ± (−x3 + 10x2 − 9x+ 4), 0 < x < 1 (4.326)

By using Eqs. (4.321) and (4.323), Eq. (4.325) implies that

η(x) > 0, 0 < x < 2/3 (4.327)

Moreover, because (i)
√

(3x2 − 3x+ 1)(x3 − x+ 2) > 0, 0 < x < 2 (see Eqs. (4.239) and
(4.240)); and (ii)

−x3 + 10x2 − 9x+ 4 = x2(1 − x) + (3x− 3/2)2 + 7/4 > 7/4, 0 < x < 1 (4.328)
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Eq. (4.326) implies that
η+(x) > 0, 0 < x < 1 (4.329)

Next, by using Eqs. (4.157), (4.317), (4.325) and (4.326), it can be shown that (i)

[
J+(x) − I+(x)

]
η(x)

=
2
√

2x(2 − x)
√

(3x2 − 3x+ 1)(x3 − x+ 2) − (x5 − 12x4 + 29x3 − 22x2 + 8x)
x(2 − x)

=
2
√

2x(2 − x)
√

(3x2 − 3x+ 1)(x3 − x+ 2) − x(2 − x)(−x3 + 10x2 − 9x+ 4)
x(2 − x)

= η−(x), 0 < x < 1

(4.330)
and (ii)

η−(x)η+(x) = −x6 + 44x5 − 142x4 + 172x3 − 89x2 + 16x = x(1 − x)3(x2 − 41x+ 16)

= x(1 − x)3(x− c3)
(
x− 41 + 7

√
33

2

)
, 0 < x < 1

(4.331)
In turn, Eqs. (4.330) and (4.331) imply that

[J+(x) − I+(x)] η(x) η+(x) = x(1 − x)3(x− c3)

(
x− 41 + 7

√
33

2

)
, 0 < x < 1 (4.332)

With the aid of Eqs. (4.327), (4.329) and (4.332), and the relation

0 < c3 < 2/3 < 1 <
41 + 7

√
33

2
(4.333)

one concludes that

J+(x) − I+(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0 if 0 < x < c3

= 0 if x = c3

< 0 if c3 < x < 2/3

(4.334)

Eq. (4.316) now is an immediate result of Eqs. (4.324) and (4.334). QED.

With the above preparations, Theorem 34 can now be proved. Part A is identical to
part A of Theorem 36. Part B can be shown using Theorems 38–48 and the two relations

√
x < L+(x) and I+(x) < L+(x), 0 < x < 1 (4.335)
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which form a part of Theorem 37. Part C follows from Eqs. (4.230), (4.231), and (4.156).
Part D was shown in Eqs. (4.233) and (4.237). QED.

Finally, note that none of the relations

x < J+(x), x < L−(x), and K+(x) < J+(x), 0 < x < 1 (4.336)

appears in Theorems 37–48. However, they can be shown using Theorem 34. As such,
they can be considered as results of Theorems 38–48 and the relations Eq. (4.335).
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5. Conclusions and Discussions

With the aid of many unexpected mathematical simplifications that occur along the
way, it has been shown in Sec. 4 that there is an explicit analytical solution to the implicit
stability conditions stated in Theorem 3. The first and perhaps the most important “break”
encountered is the simple relation Eq. (4.23), i.e., H(ν, τ, s), a quartic polynomial in s, is
equal to the product of 4(1 − ν2)s2 and G(ν, τ, s), a quadratic polynomial in s. Without
Eq. (4.23) and the fortunate fact that both D(ν, τ, s) and F (ν, τ, s) are also quadratic
polynomials in s, the relatively straightforward study of the necessary stability conditions
Eqs. (4.25)–(4.27) (Theorem 6) as presented in Sec. 4 would have become much more
complicated.

Moreover, the fact that F (ν, τ, 1) and H(ν, τ, 1) can be cast into the simple factorized
forms Eqs. (4.35) and (4.37), respectively, are instrumental in the successful effort to
establish Eq. (4.41) as necessary conditions for stability (Theorem 12).

With the aid of Theorems 13–15, it was shown that the special case in which (ν, τ)
satisfies Eq. (4.2) and yet is c-τ unstable occurs if and only if τ = ν2 = 1 (Theorem 16).
Using Theorem 16, Theorem 17 was then established to provide a set of necessary and
sufficient stability conditions much more explicit and easier to handle than those given
originally in Theorem 3. Based on Theorem 17, it was then shown that the c-τ scheme is
stable if (a) ν = 0 and τ ≥ 0; or (b) ν2 = 1 and τ > 1; or (c) 0 < ν2 < 1 and τ = |ν|
(Theorem 18).

Excluding the four special cases addressed in Theorems 16 and 18, the set Ψ defined
in Eq. (4.66) is the set of all other (ν, τ) that satisfy the necessary stability conditions
τ ≥ ν2 and ν2 ≤ 1 (Theorem 19). To facilitate the development, Ψ is divided into two
disjoint subsets Ψ− and Ψ+, which are defined in Eq. (4.66) and (4.67).

It turns out that Eqs. (4.25) and (4.27) are satisfied by all (ν, τ) ∈ Ψ (Theorems 21
and 22). Thus, according to Theorem 17, a given (ν, τ) ∈ Ψ is c-τ stable if and only if
it satisfies Eq. (4.26). As such, one arrives at the conclusion that a given (ν, τ) ∈ Ψ is
c-τ stable if and only if it satisfies Eq. (4.84) (Theorem 23). This necessary and sufficient
stability condition obviously is even simpler than those given in Theorem 17.

With the aid of Theorems 24–31, for the set Ψ, we are able to obtain the explicit
solution to the necessary and sufficient stability condition Eq. (4.84) in the form given in
Theorem 32. The functions I+(x), J+(x), K+(x), L+(x), and L−(x), 0 < x < 1, that
appear in Theorem 32 are defined in Eqs. (4.91), (4.92), (4.114), and (4.122).

In principle, whether a given (ν, τ) is c-τ stable can be determined by using Theorems
12, 16, 18, 19, and 32. However, by using the alternative definitions of Ψ− and Ψ+ given
in Theorem 33, and the ordering properties Eqs. (4.160)–(4.168) given in Theorem 34, it
was shown that Theorems 12, 16, 18, 19, and 32 can be combined and turned into the
simple explicit form of necessary and sufficient stability conditions given in Theorem 35.

Finally note that the proof of the ordering properties Eqs. (4.160)–(4.168) is hinged
on the rather incredible facts that the 4–6th order polynomials in x or

√
x that appear

in Eqs. (4.247), (4.251), (4.255), (4.259), (4.263), (4.295), (4.303), (4.312), and (4.331) all
can be factorized and studied analytically.
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      implicit real*8(a-h,o-z)
c
c     Program "ineqs.for".
c
c     This program is used to verify numerically the inequalities
c     Equations (4.160)--(4.168) (see Theorem 34).
c
c *** The functions I-plus, K-plus, L-minus, and L-plus are undefined
c *** at x=0.d0. Thus, instead of being evaluated at x=0.d0, these
c *** functions will be evaluated at x=ep where ep is a very small
c *** positive number.
c
c *** At x=1.d0, 2.d0*(2.d0-x-x**2)=0.d0. Because of round-off errors,
c *** the value of this expression may become negative when x is very
c *** close to 1.d0. As such the square root of this expression and
c *** therefore the functions L-minus and L-plus may be undefined
c *** computationally when x is too close to 1.d0. Thus, instead of
c *** being evaluated at x=1.d0, the functions will be evaluated at
c *** x=1.d0-eq where eq is a very small positive number.
c
c *** n1 = number of uniform sub-intervals in (0,c1).
c *** n2 = number of uniform sub-intervals in (c1,c2).
c *** n3 = number of uniform sub-intervals in (c2,c3).
c *** n4 = number of uniform sub-intervals in (c3,c4).
c *** n5 = number of uniform sub-intervals in (c4,1).
c
      srt(x)=dsqrt(x)
      fip(x)=(3.d0*x-2.d0+2.d0*dsqrt(3.d0*x**2-3.d0*x+1.d0))/x
      fjp(x)=(3.d0*x-2.d0+dsqrt(2.d0*(x**3-x+2.d0)))/(2.d0-x)
      fkp(x)=(x-1.d0+dsqrt(5.d0*x**2-2.d0*x+1.d0))/(2.d0*x)
      flm(x)=(4.d0-x-2.d0*dsqrt(2.d0*(2.d0-x-x**2)))/x
      flp(x)=(4.d0-x+2.d0*dsqrt(2.d0*(2.d0-x-x**2)))/x
c
      n1=17
      n2=10
      n3=12
      n4=14
      n5=47
      ep=1.d-7
      eq=1.d-12
      one=1.d0-eq
      n5m=n5-1
c
      c1=3.d0-2.d0*dsqrt(2.d0)
      c2=3.d0/11.d0
      c3=(41.d0-7.d0*dsqrt(33.d0))/2.d0
      c4=(dexp((1.d0/3.d0)*dlog(dsqrt(1664.d0/27.d0)+181.d0/27.d0))
     *   -dexp((1.d0/3.d0)*dlog(dsqrt(1664.d0/27.d0)-181.d0/27.d0))
     *   -2.d0/3.d0)**2
c
      open (unit=8,file='ineqs.txt')
      write (8,1)
      write (8,2)
      write (8,3) n1,n2,n3,n4,n5
      write (8,4) ep,eq
      write (8,2)
      write (8,10) c1,c2,c3,c4
      write (8,2)
c
      dx1=c1/dfloat(n1)
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      dx2=(c2-c1)/dfloat(n2)
      dx3=(c3-c2)/dfloat(n3)
      dx4=(c4-c3)/dfloat(n4)
      dx5=(1.d0-c4)/dfloat(n5)
c
      write (8,20) ep
      write (8,30) fip(ep),ep,fkp(ep),flm(ep)
      write (8,40) fjp(ep),srt(ep),flp(ep)
      write (8,2)
      x=0.d0
      do 100 i=1,n1
      x=x+dx1
      write (8,20) x
      write (8,30) fip(x),x,fkp(x),flm(x)
      write (8,40) fjp(x),srt(x),flp(x)
100   continue
      write (8,2)
      x=c1
      do 200 i=1,n2
      x=x+dx2
      write (8,20) x
      write (8,50) x,fip(x),fkp(x),flm(x)
      write (8,40) fjp(x),srt(x),flp(x)
200   continue
      write (8,2)
      x=c2
      do 300 i=1,n3
      x=x+dx3
      write (8,20) x
      write (8,60) x,fkp(x),flm(x),fip(x)
      write (8,40) fjp(x),srt(x),flp(x)
300   continue
      write (8,2)
      x=c3
      do 400 i=1,n4
      x=x+dx4
      write (8,20) x
      write (8,70) x,fkp(x),flm(x),srt(x)
      write (8,80) fjp(x),fip(x),flp(x)
400   continue
      write (8,2)
      x=c4
      do 500 i=1,n5m
      x=x+dx5
      write (8,20) x
      write (8,90) x,fkp(x),srt(x),flm(x)
      write (8,80) fjp(x),fip(x),flp(x)
500   continue
      write (8,2)
      write (8,20) one
      write (8,90) one,fkp(one),srt(one),flm(one)
      write (8,80) fjp(one),fip(one),flp(one)
      close (unit=8)
1     format (' ***** The output for the code "ineqs.for". ***********')
2     format (' ******************************************************')
3     format (' n1 =',i3,' n2 =',i3,' n3 =',i3,' n4 =',i3,' n5 =',i3)
4     format (' ep =',g14.7,' eq =',g14.7)
10    format (' c1 =',g14.7,' c2 =',g14.7,' c3 =',g14.7,' c4 =',g14.7)
20    format (' x =',g14.7)
30    format (' fip =',g14.7,' x =',g14.7,' fkp =',g14.7,' flm ='g14.7)
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40    format (' fjp =',g14.7,' srt =',g14.7,' flp =',g14.7)
50    format (' x =',g14.7,' fip =',g14.7,' fkp =',g14.7,' flm ='g14.7)
60    format (' x =',g14.7,' fkp =',g14.7,' flm =',g14.7,' fip ='g14.7)
70    format (' x =',g14.7,' fkp =',g14.7,' flm =',g14.7,' srt ='g14.7)
80    format (' fjp =',g14.7,' fip =',g14.7,' flp ='g14.7)
90    format (' x =',g14.7,' fkp =',g14.7,' srt =',g14.7,' flm ='g14.7)
      stop
      end
�
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ineqs.txt
 ***** The output for the code "ineqs.for". ***********
 ******************************************************
 n1 = 17 n2 = 10 n3 = 12 n4 = 14 n5 = 47
 ep = 0.1000000E-06 eq = 0.1000000E-11
 ******************************************************
 c1 = 0.1715729     c2 = 0.2727273     c3 = 0.3940307     c4 = 0.5302216    
 ******************************************************
 x = 0.1000000E-06
 fip = 0.7549517E-07 x = 0.1000000E-06 fkp = 0.9936496E-07 flm = 0.1154632E-06
 fjp = 0.1250000E-06 srt = 0.3162278E-03 flp = 0.8000000E+08
 ******************************************************
 x = 0.1009252E-01
 fip = 0.7685593E-02 x = 0.1009252E-01 fkp = 0.1019436E-01 flm = 0.1138297E-01
 fjp = 0.1267669E-01 srt = 0.1004615     flp =  790.6547    
 x = 0.2018504E-01
 fip = 0.1561019E-01 x = 0.2018504E-01 fkp = 0.2059214E-01 flm = 0.2282467E-01
 fjp = 0.2547771E-01 srt = 0.1420741     flp =  394.3102    
 x = 0.3027757E-01
 fip = 0.2378408E-01 x = 0.3027757E-01 fkp = 0.3119254E-01 flm = 0.3432655E-01
 fjp = 0.3840651E-01 srt = 0.1740045     flp =  262.1877    
 x = 0.4037009E-01
 fip = 0.3221806E-01 x = 0.4037009E-01 fkp = 0.4199420E-01 flm = 0.4589012E-01
 fjp = 0.5146663E-01 srt = 0.2009231     flp =  196.1206    
 x = 0.5046261E-01
 fip = 0.4092349E-01 x = 0.5046261E-01 fkp = 0.5299516E-01 flm = 0.5751692E-01
 fjp = 0.6466170E-01 srt = 0.2246388     flp =  156.4757    
 x = 0.6055513E-01
 fip = 0.4991230E-01 x = 0.6055513E-01 fkp = 0.6419281E-01 flm = 0.6920851E-01
 fjp = 0.7799544E-01 srt = 0.2460795     flp =  130.0418    
 x = 0.7064765E-01
 fip = 0.5919705E-01 x = 0.7064765E-01 fkp = 0.7558387E-01 flm = 0.8096653E-01
 fjp = 0.9147166E-01 srt = 0.2657963     flp =  111.1570    
 x = 0.8074018E-01
 fip = 0.6879090E-01 x = 0.8074018E-01 fkp = 0.8716441E-01 flm = 0.9279262E-01
 fjp = 0.1050943     srt = 0.2841482     flp =  96.99047    
 x = 0.9083270E-01
 fip = 0.7870770E-01 x = 0.9083270E-01 fkp = 0.9892977E-01 flm = 0.1046885    
 fjp = 0.1188673     srt = 0.3013846     flp =  85.96932    
 x = 0.1009252    
 fip = 0.8896199E-01 x = 0.1009252     fkp = 0.1108746     flm = 0.1166559    
 fjp = 0.1327948     srt = 0.3176873     flp =  77.14995    
 x = 0.1110177    
 fip = 0.9956905E-01 x = 0.1110177     fkp = 0.1229927     flm = 0.1286967    
 fjp = 0.1468811     srt = 0.3331933     flp =  69.93186    
 x = 0.1211103    
 fip = 0.1105449     x = 0.1211103     fkp = 0.1352774     flm = 0.1408127    
 fjp = 0.1611304     srt = 0.3480090     flp =  63.91469    
 x = 0.1312028    
 fip = 0.1219063     x = 0.1312028     fkp = 0.1477212     flm = 0.1530058    
 fjp = 0.1755472     srt = 0.3622193     flp =  58.82131    
 x = 0.1412953    
 fip = 0.1336709     x = 0.1412953     fkp = 0.1603157     flm = 0.1652779    
 fjp = 0.1901361     srt = 0.3758927     flp =  54.45373    
 x = 0.1513878    
 fip = 0.1458572     x = 0.1513878     fkp = 0.1730522     flm = 0.1776312    
 fjp = 0.2049017     srt = 0.3890859     flp =  50.66677    
 x = 0.1614804    
 fip = 0.1584845     x = 0.1614804     fkp = 0.1859211     flm = 0.1900676    
 fjp = 0.2198489     srt = 0.4018462     flp =  47.35156    
 x = 0.1715729    
 fip = 0.1715729     x = 0.1715729     fkp = 0.1989124     flm = 0.2025894    
 fjp = 0.2349824     srt = 0.4142136     flp =  44.42483    
 ******************************************************
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ineqs.txt
 x = 0.1816883    
 x = 0.1816883     fip = 0.1851749     fkp = 0.2120452     flm = 0.2152275    
 fjp = 0.2503425     srt = 0.4262491     flp =  41.81622    
 x = 0.1918038    
 x = 0.1918038     fip = 0.1992835     fkp = 0.2252789     flm = 0.2279558    
 fjp = 0.2659001     srt = 0.4379541     flp =  39.48134    
 x = 0.2019192    
 x = 0.2019192     fip = 0.2139216     fkp = 0.2386021     flm = 0.2407767    
 fjp = 0.2816607     srt = 0.4493542     flp =  37.37903    
 x = 0.2120346    
 x = 0.2120346     fip = 0.2291133     fkp = 0.2520026     flm = 0.2536927    
 fjp = 0.2976296     srt = 0.4604722     flp =  35.47599    
 x = 0.2221501    
 x = 0.2221501     fip = 0.2448834     fkp = 0.2654682     flm = 0.2667063    
 fjp = 0.3138126     srt = 0.4713280     flp =  33.74499    
 x = 0.2322655    
 x = 0.2322655     fip = 0.2612574     fkp = 0.2789864     flm = 0.2798201    
 fjp = 0.3302153     srt = 0.4819393     flp =  32.16352    
 x = 0.2423810    
 x = 0.2423810     fip = 0.2782619     fkp = 0.2925447     flm = 0.2930369    
 fjp = 0.3468438     srt = 0.4923220     flp =  30.71286    
 x = 0.2524964    
 x = 0.2524964     fip = 0.2959241     fkp = 0.3061303     flm = 0.3063594    
 fjp = 0.3637040     srt = 0.5024902     flp =  29.37726    
 x = 0.2626118    
 x = 0.2626118     fip = 0.3142718     fkp = 0.3197307     flm = 0.3197905    
 fjp = 0.3808023     srt = 0.5124567     flp =  28.14342    
 x = 0.2727273    
 x = 0.2727273     fip = 0.3333333     fkp = 0.3333333     flm = 0.3333333    
 fjp = 0.3981449     srt = 0.5222330     flp =  27.00000    
 ******************************************************
 x = 0.2828359    
 x = 0.2828359     fkp = 0.3469168     flm = 0.3469816     fip = 0.3531240    
 fjp = 0.4157266     srt = 0.5318232     flp =  25.93797    
 x = 0.2929445    
 x = 0.2929445     fkp = 0.3604781     flm = 0.3607478     fip = 0.3736852    
 fjp = 0.4335657     srt = 0.5412435     flp =  24.94818    
 x = 0.3030531    
 x = 0.3030531     fkp = 0.3740056     flm = 0.3746351     fip = 0.3950460    
 fjp = 0.4516690     srt = 0.5505026     flp =  24.02338    
 x = 0.3131618    
 x = 0.3131618     fkp = 0.3874879     flm = 0.3886471     fip = 0.4172353    
 fjp = 0.4700437     srt = 0.5596086     flp =  23.15726    
 x = 0.3232704    
 x = 0.3232704     fkp = 0.4009141     flm = 0.4027873     fip = 0.4402814    
 fjp = 0.4886969     srt = 0.5685687     flp =  22.34430    
 x = 0.3333790    
 x = 0.3333790     fkp = 0.4142738     flm = 0.4170595     fip = 0.4642118    
 fjp = 0.5076361     srt = 0.5773898     flp =  21.57965    
 x = 0.3434876    
 x = 0.3434876     fkp = 0.4275569     flm = 0.4314677     fip = 0.4890530    
 fjp = 0.5268689     srt = 0.5860782     flp =  20.85904    
 x = 0.3535962    
 x = 0.3535962     fkp = 0.4407542     flm = 0.4460158     fip = 0.5148299    
 fjp = 0.5464032     srt = 0.5946396     flp =  20.17866    
 x = 0.3637049    
 x = 0.3637049     fkp = 0.4538567     flm = 0.4607081     fip = 0.5415657    
 fjp = 0.5662470     srt = 0.6030795     flp =  19.53515    
 x = 0.3738135    
 x = 0.3738135     fkp = 0.4668562     flm = 0.4755489     fip = 0.5692811    
 fjp = 0.5864085     srt = 0.6114029     flp =  18.92550    
 x = 0.3839221    
 x = 0.3839221     fkp = 0.4797451     flm = 0.4905430     fip = 0.5979939    
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 fjp = 0.6068962     srt = 0.6196145     flp =  18.34702    
 x = 0.3940307    
 x = 0.3940307     fkp = 0.4925164     flm = 0.5056950     fip = 0.6277187    
 fjp = 0.6277187     srt = 0.6277187     flp =  17.79729    
 ******************************************************
 x = 0.4037587    
 x = 0.4037587     fkp = 0.5046894     flm = 0.5204302     srt = 0.6354201    
 fjp = 0.6480814     fip = 0.6572896     flp =  17.29339    
 x = 0.4134866    
 x = 0.4134866     fkp = 0.5167423     flm = 0.5353209     srt = 0.6430292    
 fjp = 0.6687705     fip = 0.6878137     flp =  16.81234    
 x = 0.4232145    
 x = 0.4232145     fkp = 0.5286703     flm = 0.5503721     srt = 0.6505494    
 fjp = 0.6897943     fip = 0.7192926     flp =  16.35257    
 x = 0.4329424    
 x = 0.4329424     fkp = 0.5404690     flm = 0.5655889     srt = 0.6579836    
 fjp = 0.7111613     fip = 0.7517238     flp =  15.91262    
 x = 0.4426703    
 x = 0.4426703     fkp = 0.5521347     flm = 0.5809764     srt = 0.6653348    
 fjp = 0.7328803     fip = 0.7851000     flp =  15.49116    
 x = 0.4523983    
 x = 0.4523983     fkp = 0.5636642     flm = 0.5965403     srt = 0.6726056    
 fjp = 0.7549601     fip = 0.8194089     flp =  15.08699    
 x = 0.4621262    
 x = 0.4621262     fkp = 0.5750545     flm = 0.6122865     srt = 0.6797986    
 fjp = 0.7774099     fip = 0.8546332     flp =  14.69900    
 x = 0.4718541    
 x = 0.4718541     fkp = 0.5863032     flm = 0.6282209     srt = 0.6869164    
 fjp = 0.8002391     fip = 0.8907504     flp =  14.32617    
 x = 0.4815820    
 x = 0.4815820     fkp = 0.5974081     flm = 0.6443499     srt = 0.6939611    
 fjp = 0.8234573     fip = 0.9277326     flp =  13.96757    
 x = 0.4913100    
 x = 0.4913100     fkp = 0.6083677     flm = 0.6606804     srt = 0.7009351    
 fjp = 0.8470743     fip = 0.9655470     flp =  13.62232    
 x = 0.5010379    
 x = 0.5010379     fkp = 0.6191806     flm = 0.6772194     srt = 0.7078403    
 fjp = 0.8711002     fip =  1.004156     flp =  13.28964    
 x = 0.5107658    
 x = 0.5107658     fkp = 0.6298458     flm = 0.6939742     srt = 0.7146788    
 fjp = 0.8955453     fip =  1.043517     flp =  12.96878    
 x = 0.5204937    
 x = 0.5204937     fkp = 0.6403626     flm = 0.7109527     srt = 0.7214525    
 fjp = 0.9204201     fip =  1.083583     flp =  12.65907    
 x = 0.5302216    
 x = 0.5302216     fkp = 0.6507306     flm = 0.7281632     srt = 0.7281632    
 fjp = 0.9457355     fip =  1.124304     flp =  12.35987    
 ******************************************************
 x = 0.5402169    
 x = 0.5402169     fkp = 0.6612284     srt = 0.7349945     flm = 0.7460974    
 fjp = 0.9722173     fip =  1.166769     flp =  12.06277    
 x = 0.5502122    
 x = 0.5502122     fkp = 0.6715692     srt = 0.7417629     flm = 0.7642956    
 fjp = 0.9991881     fip =  1.209809     flp =  11.77555    
 x = 0.5602075    
 x = 0.5602075     fkp = 0.6817533     srt = 0.7484701     flm = 0.7827683    
 fjp =  1.026661     fip =  1.253358     flp =  11.49765    
 x = 0.5702028    
 x = 0.5702028     fkp = 0.6917814     srt = 0.7551177     flm = 0.8015269    
 fjp =  1.054648     fip =  1.297353     flp =  11.22857    
 x = 0.5801981    
 x = 0.5801981     fkp = 0.7016542     srt = 0.7617073     flm = 0.8205830    
 fjp =  1.083164     fip =  1.341727     flp =  10.96781    
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 x = 0.5901934    
 x = 0.5901934     fkp = 0.7113728     srt = 0.7682404     flm = 0.8399495    
 fjp =  1.112220     fip =  1.386415     flp =  10.71493    
 x = 0.6001886    
 x = 0.6001886     fkp = 0.7209383     srt = 0.7747184     flm = 0.8596397    
 fjp =  1.141833     fip =  1.431351     flp =  10.46950    
 x = 0.6101839    
 x = 0.6101839     fkp = 0.7303522     srt = 0.7811427     flm = 0.8796680    
 fjp =  1.172015     fip =  1.476471     flp =  10.23113    
 x = 0.6201792    
 x = 0.6201792     fkp = 0.7396159     srt = 0.7875146     flm = 0.9000497    
 fjp =  1.202782     fip =  1.521713     flp =  9.999448    
 x = 0.6301745    
 x = 0.6301745     fkp = 0.7487310     srt = 0.7938353     flm = 0.9208013    
 fjp =  1.234148     fip =  1.567017     flp =  9.774095    
 x = 0.6401698    
 x = 0.6401698     fkp = 0.7576992     srt = 0.8001061     flm = 0.9419404    
 fjp =  1.266130     fip =  1.612325     flp =  9.554745    
 x = 0.6501651    
 x = 0.6501651     fkp = 0.7665224     srt = 0.8063281     flm = 0.9634858    
 fjp =  1.298742     fip =  1.657582     flp =  9.341082    
 x = 0.6601603    
 x = 0.6601603     fkp = 0.7752023     srt = 0.8125025     flm = 0.9854579    
 fjp =  1.332001     fip =  1.702736     flp =  9.132810    
 x = 0.6701556    
 x = 0.6701556     fkp = 0.7837410     srt = 0.8186303     flm =  1.007879    
 fjp =  1.365924     fip =  1.747740     flp =  8.929647    
 x = 0.6801509    
 x = 0.6801509     fkp = 0.7921404     srt = 0.8247126     flm =  1.030771    
 fjp =  1.400528     fip =  1.792548     flp =  8.731324    
 x = 0.6901462    
 x = 0.6901462     fkp = 0.8004027     srt = 0.8307504     flm =  1.054162    
 fjp =  1.435830     fip =  1.837119     flp =  8.537585    
 x = 0.7001415    
 x = 0.7001415     fkp = 0.8085299     srt = 0.8367446     flm =  1.078079    
 fjp =  1.471848     fip =  1.881414     flp =  8.348183    
 x = 0.7101368    
 x = 0.7101368     fkp = 0.8165241     srt = 0.8426961     flm =  1.102551    
 fjp =  1.508601     fip =  1.925400     flp =  8.162884    
 x = 0.7201320    
 x = 0.7201320     fkp = 0.8243875     srt = 0.8486059     flm =  1.127613    
 fjp =  1.546108     fip =  1.969045     flp =  7.981461    
 x = 0.7301273    
 x = 0.7301273     fkp = 0.8321223     srt = 0.8544749     flm =  1.153300    
 fjp =  1.584388     fip =  2.012320     flp =  7.803693    
 x = 0.7401226    
 x = 0.7401226     fkp = 0.8397306     srt = 0.8603038     flm =  1.179652    
 fjp =  1.623462     fip =  2.055201     flp =  7.629368    
 x = 0.7501179    
 x = 0.7501179     fkp = 0.8472146     srt = 0.8660935     flm =  1.206713    
 fjp =  1.663349     fip =  2.097666     flp =  7.458277    
 x = 0.7601132    
 x = 0.7601132     fkp = 0.8545766     srt = 0.8718447     flm =  1.234531    
 fjp =  1.704072     fip =  2.139695     flp =  7.290217    
 x = 0.7701085    
 x = 0.7701085     fkp = 0.8618186     srt = 0.8775582     flm =  1.263160    
 fjp =  1.745652     fip =  2.181271     flp =  7.124987    
 x = 0.7801038    
 x = 0.7801038     fkp = 0.8689429     srt = 0.8832348     flm =  1.292660    
 fjp =  1.788111     fip =  2.222381     flp =  6.962386    
 x = 0.7900990    
 x = 0.7900990     fkp = 0.8759515     srt = 0.8888752     flm =  1.323099    
 fjp =  1.831472     fip =  2.263011     flp =  6.802214    
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 x = 0.8000943    
 x = 0.8000943     fkp = 0.8828468     srt = 0.8944799     flm =  1.354550    
 fjp =  1.875760     fip =  2.303152     flp =  6.644271    
 x = 0.8100896    
 x = 0.8100896     fkp = 0.8896306     srt = 0.9000498     flm =  1.387102    
 fjp =  1.920998     fip =  2.342796     flp =  6.488349    
 x = 0.8200849    
 x = 0.8200849     fkp = 0.8963053     srt = 0.9055854     flm =  1.420850    
 fjp =  1.967213     fip =  2.381936     flp =  6.334238    
 x = 0.8300802    
 x = 0.8300802     fkp = 0.9028728     srt = 0.9110874     flm =  1.455906    
 fjp =  2.014428     fip =  2.420567     flp =  6.181717    
 x = 0.8400755    
 x = 0.8400755     fkp = 0.9093352     srt = 0.9165563     flm =  1.492400    
 fjp =  2.062673     fip =  2.458687     flp =  6.030554    
 x = 0.8500707    
 x = 0.8500707     fkp = 0.9156945     srt = 0.9219928     flm =  1.530482    
 fjp =  2.111973     fip =  2.496292     flp =  5.880499    
 x = 0.8600660    
 x = 0.8600660     fkp = 0.9219528     srt = 0.9273974     flm =  1.570329    
 fjp =  2.162358     fip =  2.533382     flp =  5.731282    
 x = 0.8700613    
 x = 0.8700613     fkp = 0.9281119     srt = 0.9327708     flm =  1.612151    
 fjp =  2.213857     fip =  2.569957     flp =  5.582603    
 x = 0.8800566    
 x = 0.8800566     fkp = 0.9341739     srt = 0.9381133     flm =  1.656201    
 fjp =  2.266500     fip =  2.606019     flp =  5.434124    
 x = 0.8900519    
 x = 0.8900519     fkp = 0.9401406     srt = 0.9434256     flm =  1.702787    
 fjp =  2.320318     fip =  2.641569     flp =  5.285453    
 x = 0.9000472    
 x = 0.9000472     fkp = 0.9460140     srt = 0.9487082     flm =  1.752292    
 fjp =  2.375344     fip =  2.676609     flp =  5.136132    
 x = 0.9100424    
 x = 0.9100424     fkp = 0.9517957     srt = 0.9539614     flm =  1.805199    
 fjp =  2.431612     fip =  2.711144     flp =  4.985600    
 x = 0.9200377    
 x = 0.9200377     fkp = 0.9574878     srt = 0.9591860     flm =  1.862136    
 fjp =  2.489155     fip =  2.745178     flp =  4.833160    
 x = 0.9300330    
 x = 0.9300330     fkp = 0.9630919     srt = 0.9643822     flm =  1.923937    
 fjp =  2.548009     fip =  2.778714     flp =  4.677908    
 x = 0.9400283    
 x = 0.9400283     fkp = 0.9686098     srt = 0.9695506     flm =  1.991756    
 fjp =  2.608213     fip =  2.811757     flp =  4.518626    
 x = 0.9500236    
 x = 0.9500236     fkp = 0.9740431     srt = 0.9746915     flm =  2.067265    
 fjp =  2.669803     fip =  2.844314     flp =  4.353579    
 x = 0.9600189    
 x = 0.9600189     fkp = 0.9793937     srt = 0.9798055     flm =  2.153047    
 fjp =  2.732819     fip =  2.876389     flp =  4.180123    
 x = 0.9700141    
 x = 0.9700141     fkp = 0.9846630     srt = 0.9848930     flm =  2.253481    
 fjp =  2.797304     fip =  2.907989     flp =  3.993822    
 x = 0.9800094    
 x = 0.9800094     fkp = 0.9898528     srt = 0.9899543     flm =  2.377166    
 fjp =  2.863299     fip =  2.939120     flp =  3.786021    
 x = 0.9900047    
 x = 0.9900047     fkp = 0.9949646     srt = 0.9949898     flm =  2.546482    
 fjp =  2.930849     fip =  2.969788     flp =  3.534287    
 ******************************************************
 x =  1.000000    
 x =  1.000000     fkp =  1.000000     srt =  1.000000     flm =  2.999995    
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 fjp =  3.000000     fip =  3.000000     flp =  3.000005    
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      implicit real*8(a-h,o-z)
      complex*16 a,b,c,cdsqrt,x1,x2,x3,dcmplx
c
c     Program "ctausc.for".
c
c     This program is used to verify numerically the assertion made
c     in part G of Theorem 35.
c
c *** The critical value of tau, i.e., tauo(nu**2), is evaluated for
c *** each given value of nu (the Courant number).
c
c *** Given any (nu,tau), the spectral radius of the amplification
c *** matrix is a function of the phase angle theta. The least upper
c *** bound (denoted by "am") of the spectral radii over the range
c *** -pi < theta .le. pi is evaluated for each given (nu,tau).
c
c *** When nu is replaced by -nu, each of the two resulting 
amplification
c *** factors (defined in Eq. (4.7)) becomes the complex conjugate of 
that
c *** before sign-change. Thus the spectral radius does not change as nu
c *** is replaced by -nu. For this reason, the range of nu can be 
limited
c *** to nu. ge. 0.
c
c *** When theta is replaced by -theta, each of the two resulting
c *** amplification factors also becomes the complex conjugate of
c *** that before sign-change. Thus the range of theta can be limited
c *** to 0 .le. theta .le. pi.
c
c *** Theorems 16 and 18 imply that the least upper bound am = 1 if
c *** nu = 1 and tau .ge. 1 (Note: According to Eq. (4.7), the value
c *** of the principal amplification factor = 1 when theta = 0. Thus
c *** am .ge. 1 for any (nu,tau). In turn, this implies that am = 1
c *** for any (nu,tau) which meets the condition Eq. (4.2)). Moreover,
c *** Theorems 6 and 12 imply that am > 1 if nu > 1 regardless the
c *** value assumed by tau. Thus numerical results may not be consistent
c *** with theoretical predictions at the singular case nu = 1 if
c *** round-off errors are not controlled carefully. For this reason,
c *** a statement "if (dabs(x-1.d0).lt.ep) x=1.d0" is added in the code
c *** to insure that the value of x is really "1" as intended. Here
c *** ep (>0) is an input parameter and assumes to be very small.
c
c     x = nu.
c     z = The phase angle theta of a Fourier component.
c     nx = number of the values of nu.
c
c     nt = number of the values of tau with tau>tauo (tau<tauo) for
c          each value of nu. Here tauo is the critical value of tau
c          associated with a given value of nu. Because the case with
c          tau=tauo is always considered, there are (2*nt+1) values
c          of tau associated with each value of nu, i.e.,
c          tauo*(1-dt*nt), tauo*(1-dt*(nt-1)),..., tauo*(1-dt), tauo,
c          tauo*(1+dt),..., tauo*(1+dt*(nt-1)), tauo*(1+dt*n).
c
c     nz = number of the intervals over the domain
c          0 .le. theta .le. pi.
c     xs = The initial value of nu.
c
      fkp(s) = (s-1.d0+dsqrt(5.d0*s**2-2.d0*s+1.d0))/(2.d0*s)
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      flm(s) = (4.d0-s-2.d0*dsqrt(2.d0*(2.d0-s-s**2)))/s
c
      pi = 3.1415926535897932d0
      nx = 25
      nt = 5
      nz = 1000
      xs = 0.d0
      dx = 5.d-2
      dt = 1.d-4
      ep = 1.d-7
      c2 = 3.d0/11.d0
      dz = pi/dfloat(nz)
      x = xs-dx
      nzp = nz+1
      ts = 1.d0-dt*dfloat(nt+1)
      nt2p = nt*2+1
c
      open (unit=8,file='ctausc.txt')
      write (8,10)
      write (8,15)
      write (8,20) nx,nt,nz
      write (8,30) xs,dx,dt,ep
      write (8,15)
      do 200 i = 1,nx
      x = x+dx
      if (dabs(x-1.d0).lt.ep) x=1.d0
      xx = x**2
      if (xx.eq.0.d0) tauo = 0.d0
      if (xx.gt.0.d0.and.xx.le.c2) tauo = flm(xx)
      if (xx.gt.c2) tauo = fkp(xx)
      tau = tauo*ts
      dtau = tauo*dt
      do 200 j = 1,nt2p
      tau = tau+dtau
      am = 0.d0
      z = -dz
      do 100 k = 1,nzp
      z = z+dz
      z1 = dcos(z/2.d0)
      z2 = dsin(z/2.d0)
      ar = 1.d0+tau
      ai = 0.d0
      br = -2.d0*tau*z1
      bi = x*(3.d0+tau)*z2
      cr = -((1.d0 - tau)*z1**2 + (1.d0 + x**2)*z2**2)
      ci = -x*(1.d0 + tau)*z1*z2
      a = dcmplx(ar,ai)
      b = dcmplx(br,bi)
      c = dcmplx(cr,ci)
      x1 = (-b + cdsqrt(b**2 - 4.d0*a*c))/(2.d0*a)
      x2 = (-b - cdsqrt(b**2 - 4.d0*a*c))/(2.d0*a)
      a1 = cdabs(x1)
      a2 = cdabs(x2)
      am = dmax1(a1,a2,am)
100   continue
      write (8,40) x,tauo,tau,am
200   continue
      close (unit=8)
10    format (' ***** The output for the code "ctausc.for". ******')
15    format (' *****************************************************')

NASA/TM—2005-213556 70



20    format (' nx =',i4,' nt =',i4,' nz =',i4)
30    format (' xs =',g14.7,' dx =',g14.7,' dt =',g14.7,' ep =',g14.7)
40    format (' nu =',g11.4,' tauo =',g14.7,' tau =',g14.7,
     *        ' am =',g21.14)
      stop
      end
�
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ctauscBText.txt
 ***** The output for the code "ctausc.for". ******
 *****************************************************
 nx =  25 nt =   5 nz =1000
 xs =  0.000000     dx = 0.5000000E-01 dt = 0.1000000E-03 ep = 0.1000000E-06
 *****************************************************
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu =  0.000     tauo =  0.000000     tau =  0.000000     am =  1.0000000000000    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2812854E-02 am =  1.0000001740909    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2813136E-02 am =  1.0000001391629    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2813417E-02 am =  1.0000001042349    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2813699E-02 am =  1.0000000694331    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2813980E-02 am =  1.0000000346952    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2814261E-02 am =  1.0000000000000    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2814543E-02 am =  1.0000000000000    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2814824E-02 am =  1.0000000000000    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2815106E-02 am =  1.0000000000000    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2815387E-02 am =  1.0000000000000    
 nu = 0.5000E-01 tauo = 0.2814261E-02 tau = 0.2815669E-02 am =  1.0000000000000    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1127272E-01 am =  1.0000006672229    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1127384E-01 am =  1.0000005331916    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1127497E-01 am =  1.0000003994142    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1127610E-01 am =  1.0000002661220    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1127723E-01 am =  1.0000001328300    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1127835E-01 am =  1.0000000000000    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1127948E-01 am =  1.0000000000000    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1128061E-01 am =  1.0000000000000    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1128174E-01 am =  1.0000000000000    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1128287E-01 am =  1.0000000000000    
 nu = 0.1000     tauo = 0.1127835E-01 tau = 0.1128399E-01 am =  1.0000000000000    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2544479E-01 am =  1.0000013933207    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2544734E-01 am =  1.0000011137094    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2544988E-01 am =  1.0000008340988    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2545243E-01 am =  1.0000005555428    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2545498E-01 am =  1.0000002775110    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2545752E-01 am =  1.0000000000000    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2546007E-01 am =  1.0000000000000    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2546261E-01 am =  1.0000000000000    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2546516E-01 am =  1.0000000000000    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2546770E-01 am =  1.0000000000000    
 nu = 0.1500     tauo = 0.2545752E-01 tau = 0.2547025E-01 am =  1.0000000000000    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4544225E-01 am =  1.0000022161825    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4544680E-01 am =  1.0000017713023    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4545135E-01 am =  1.0000013266296    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4545589E-01 am =  1.0000008832441    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4546044E-01 am =  1.0000004411696    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4546499E-01 am =  1.0000000000000    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4546953E-01 am =  1.0000000000000    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4547408E-01 am =  1.0000000000000    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4547862E-01 am =  1.0000000000000    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4548317E-01 am =  1.0000000000000    
 nu = 0.2000     tauo = 0.4546499E-01 tau = 0.4548772E-01 am =  1.0000000000000    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7143338E-01 am =  1.0000029597671    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7144052E-01 am =  1.0000023649173    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7144767E-01 am =  1.0000017704610    
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 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7145482E-01 am =  1.0000011789100    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7146196E-01 am =  1.0000005880919    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7146911E-01 am =  1.0000000000000    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7147626E-01 am =  1.0000000000000    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7148340E-01 am =  1.0000000000000    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7149055E-01 am =  1.0000000000000    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7149770E-01 am =  1.0000000000000    
 nu = 0.2500     tauo = 0.7146911E-01 tau = 0.7150484E-01 am =  1.0000000000000    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1036525     am =  1.0000034247159    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1036629     am =  1.0000027345694    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1036732     am =  1.0000020464043    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1036836     am =  1.0000013620442    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1036940     am =  1.0000006790801    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1037043     am =  1.0000000000000    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1037147     am =  1.0000000000000    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1037251     am =  1.0000000000000    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1037354     am =  1.0000000000000    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1037458     am =  1.0000000000000    
 nu = 0.3000     tauo = 0.1037043     tau = 0.1037562     am =  1.0000000000000    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1424158     am =  1.0000034155413    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1424301     am =  1.0000027246816    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1424443     am =  1.0000020381007    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1424586     am =  1.0000013549685    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1424728     am =  1.0000006753657    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1424870     am =  1.0000000000000    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1425013     am =  1.0000000000000    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1425155     am =  1.0000000000000    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1425298     am =  1.0000000000000    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1425440     am =  1.0000000000000    
 nu = 0.3500     tauo = 0.1424870     tau = 0.1425583     am =  1.0000000000000    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1881441     am =  1.0000027984482    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1881629     am =  1.0000022284014    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1881817     am =  1.0000016634636    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1882006     am =  1.0000011036658    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1882194     am =  1.0000005490377    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1882382     am =  1.0000000000000    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1882570     am =  1.0000000000000    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1882758     am =  1.0000000000000    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1882947     am =  1.0000000000000    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1883135     am =  1.0000000000000    
 nu = 0.4000     tauo = 0.1882382     tau = 0.1883323     am =  1.0000000000000    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2413949     am =  1.0000016114364    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2414191     am =  1.0000012754027    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2414433     am =  1.0000009460213    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2414674     am =  1.0000006236255    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2414916     am =  1.0000003082242    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2415157     am =  1.0000000000000    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2415399     am =  1.0000000000000    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2415640     am =  1.0000000000000    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2415882     am =  1.0000000000000    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2416123     am =  1.0000000000000    
 nu = 0.4500     tauo = 0.2415157     tau = 0.2416365     am =  1.0000000000000    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3029100     am =  1.0000003301576    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3029403     am =  1.0000002505240    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3029706     am =  1.0000001771524    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3030009     am =  1.0000001104901    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3030312     am =  1.0000000511002    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3030615     am =  1.0000000000000    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3030918     am =  1.0000000000000    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3031222     am =  1.0000000000000    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3031525     am =  1.0000000000000    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3031828     am =  1.0000000000000    
 nu = 0.5000     tauo = 0.3030615     tau = 0.3032131     am =  1.0000000000000    
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 nu = 0.5500     tauo = 0.3732664     tau = 0.3730798     am =  1.0000000020424    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3731171     am =  1.0000000010635    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3731544     am =  1.0000000004564    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3731918     am =  1.0000000001377    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3732291     am =  1.0000000000175    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3732664     am =  1.0000000000000    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3733038     am =  1.0000000000000    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3733411     am =  1.0000000000000    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3733784     am =  1.0000000000000    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3734157     am =  1.0000000000000    
 nu = 0.5500     tauo = 0.3732664     tau = 0.3734531     am =  1.0000000000000    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4488415     am =  1.0000000004655    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4488864     am =  1.0000000002389    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4489313     am =  1.0000000001010    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4489763     am =  1.0000000000300    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4490212     am =  1.0000000000038    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4490661     am =  1.0000000000000    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4491110     am =  1.0000000000000    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4491559     am =  1.0000000000000    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4492008     am =  1.0000000000000    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4492457     am =  1.0000000000000    
 nu = 0.6000     tauo = 0.4490661     tau = 0.4492906     am =  1.0000000000000    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5275346     am =  1.0000000003183    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5275874     am =  1.0000000001631    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5276402     am =  1.0000000000689    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5276930     am =  1.0000000000204    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5277457     am =  1.0000000000026    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5277985     am =  1.0000000000000    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5278513     am =  1.0000000000000    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5279041     am =  1.0000000000000    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5279568     am =  1.0000000000000    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5280096     am =  1.0000000000000    
 nu = 0.6500     tauo = 0.5277985     tau = 0.5280624     am =  1.0000000000000    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6065970     am =  1.0000000003381    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6066577     am =  1.0000000001732    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6067184     am =  1.0000000000731    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6067790     am =  1.0000000000216    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6068397     am =  1.0000000000027    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6069004     am =  1.0000000000000    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6069611     am =  1.0000000000000    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6070218     am =  1.0000000000000    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6070825     am =  1.0000000000000    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6071432     am =  1.0000000000000    
 nu = 0.7000     tauo = 0.6069004     tau = 0.6072039     am =  1.0000000000000    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6837251     am =  1.0000000004786    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6837935     am =  1.0000000002453    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6838619     am =  1.0000000001036    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6839303     am =  1.0000000000307    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6839987     am =  1.0000000000038    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6840671     am =  1.0000000000000    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6841355     am =  1.0000000000000    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6842039     am =  1.0000000000000    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6842723     am =  1.0000000000000    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6843407     am =  1.0000000000000    
 nu = 0.7500     tauo = 0.6840671     tau = 0.6844091     am =  1.0000000000000    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7571694     am =  1.0000000008671    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7572451     am =  1.0000000004446    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7573209     am =  1.0000000001878    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7573966     am =  1.0000000000557    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7574724     am =  1.0000000000069    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7575481     am =  1.0000000000000    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7576239     am =  1.0000000000000    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7576996     am =  1.0000000000000    
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 nu = 0.8000     tauo = 0.7575481     tau = 0.7577754     am =  1.0000000000000    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7578512     am =  1.0000000000000    
 nu = 0.8000     tauo = 0.7575481     tau = 0.7579269     am =  1.0000000000000    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8258184     am =  1.0000000020601    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8259010     am =  1.0000000010570    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8259836     am =  1.0000000004470    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8260663     am =  1.0000000001328    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8261489     am =  1.0000000000166    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8262315     am =  1.0000000000000    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8263141     am =  1.0000000000000    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8263967     am =  1.0000000000000    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8264794     am =  1.0000000000000    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8265620     am =  1.0000000000000    
 nu = 0.8500     tauo = 0.8262315     tau = 0.8266446     am =  1.0000000000000    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8891255     am =  1.0000000072633    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8892145     am =  1.0000000037410    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8893035     am =  1.0000000015878    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8893924     am =  1.0000000004733    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8894814     am =  1.0000000000595    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8895703     am =  1.0000000000000    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8896593     am =  1.0000000000000    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8897482     am =  1.0000000000000    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8898372     am =  1.0000000000000    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8899261     am =  1.0000000000000    
 nu = 0.9000     tauo = 0.8895703     tau = 0.8900151     am =  1.0000000000000    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9469675     am =  1.0000000583899    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9470622     am =  1.0000000305887    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9471570     am =  1.0000000132121    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9472517     am =  1.0000000040097    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9473465     am =  1.0000000005137    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9474412     am =  1.0000000000000    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9475360     am =  1.0000000000000    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9476307     am =  1.0000000000000    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9477254     am =  1.0000000000000    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9478202     am =  1.0000000000000    
 nu = 0.9500     tauo = 0.9474412     tau = 0.9479149     am =  1.0000000000000    
 nu =  1.000     tauo =  1.000000     tau = 0.9995000     am =  1.0002500625155    
 nu =  1.000     tauo =  1.000000     tau = 0.9996000     am =  1.0002000400083    
 nu =  1.000     tauo =  1.000000     tau = 0.9997000     am =  1.0001500225035    
 nu =  1.000     tauo =  1.000000     tau = 0.9998000     am =  1.0001000100008    
 nu =  1.000     tauo =  1.000000     tau = 0.9999000     am =  1.0000500025012    
 nu =  1.000     tauo =  1.000000     tau =  1.000000     am =  1.0000000000000    
 nu =  1.000     tauo =  1.000000     tau =  1.000100     am =  1.0000000000010    
 nu =  1.000     tauo =  1.000000     tau =  1.000200     am =  1.0000000000000    
 nu =  1.000     tauo =  1.000000     tau =  1.000300     am =  1.0000000000001    
 nu =  1.000     tauo =  1.000000     tau =  1.000400     am =  1.0000000000000    
 nu =  1.000     tauo =  1.000000     tau =  1.000500     am =  1.0000000000000    
 nu =  1.050     tauo =  1.047565     tau =  1.047041     am =  1.2620287477208    
 nu =  1.050     tauo =  1.047565     tau =  1.047146     am =  1.2619981973845    
 nu =  1.050     tauo =  1.047565     tau =  1.047251     am =  1.2619676531661    
 nu =  1.050     tauo =  1.047565     tau =  1.047356     am =  1.2619371150645    
 nu =  1.050     tauo =  1.047565     tau =  1.047460     am =  1.2619065830783    
 nu =  1.050     tauo =  1.047565     tau =  1.047565     am =  1.2618760572064    
 nu =  1.050     tauo =  1.047565     tau =  1.047670     am =  1.2618455374475    
 nu =  1.050     tauo =  1.047565     tau =  1.047775     am =  1.2618150238004    
 nu =  1.050     tauo =  1.047565     tau =  1.047879     am =  1.2617845162640    
 nu =  1.050     tauo =  1.047565     tau =  1.047984     am =  1.2617540148368    
 nu =  1.050     tauo =  1.047565     tau =  1.048089     am =  1.2617235195178    
 nu =  1.100     tauo =  1.090535     tau =  1.089990     am =  1.3941859569535    
 nu =  1.100     tauo =  1.090535     tau =  1.090099     am =  1.3941522961334    
 nu =  1.100     tauo =  1.090535     tau =  1.090208     am =  1.3941186410770    
 nu =  1.100     tauo =  1.090535     tau =  1.090317     am =  1.3940849917831    
 nu =  1.100     tauo =  1.090535     tau =  1.090426     am =  1.3940513482507    
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 nu =  1.100     tauo =  1.090535     tau =  1.090535     am =  1.3940177104785    
 nu =  1.100     tauo =  1.090535     tau =  1.090644     am =  1.3939840784656    
 nu =  1.100     tauo =  1.090535     tau =  1.090753     am =  1.3939504522107    
 nu =  1.100     tauo =  1.090535     tau =  1.090862     am =  1.3939168317128    
 nu =  1.100     tauo =  1.090535     tau =  1.090971     am =  1.3938832169707    
 nu =  1.100     tauo =  1.090535     tau =  1.091080     am =  1.3938496079833    
 nu =  1.150     tauo =  1.129334     tau =  1.128769     am =  1.5059940703053    
 nu =  1.150     tauo =  1.129334     tau =  1.128882     am =  1.5059576815286    
 nu =  1.150     tauo =  1.129334     tau =  1.128995     am =  1.5059212985608    
 nu =  1.150     tauo =  1.129334     tau =  1.129108     am =  1.5058849214008    
 nu =  1.150     tauo =  1.129334     tau =  1.129221     am =  1.5058485500475    
 nu =  1.150     tauo =  1.129334     tau =  1.129334     am =  1.5058121844998    
 nu =  1.150     tauo =  1.129334     tau =  1.129447     am =  1.5057758247565    
 nu =  1.150     tauo =  1.129334     tau =  1.129560     am =  1.5057394708166    
 nu =  1.150     tauo =  1.129334     tau =  1.129673     am =  1.5057031226789    
 nu =  1.150     tauo =  1.129334     tau =  1.129786     am =  1.5056667803424    
 nu =  1.150     tauo =  1.129334     tau =  1.129899     am =  1.5056304438058    
 nu =  1.200     tauo =  1.164381     tau =  1.163799     am =  1.6078009506865    
 nu =  1.200     tauo =  1.164381     tau =  1.163915     am =  1.6077620295368    
 nu =  1.200     tauo =  1.164381     tau =  1.164032     am =  1.6077231143582    
 nu =  1.200     tauo =  1.164381     tau =  1.164148     am =  1.6076842051495    
 nu =  1.200     tauo =  1.164381     tau =  1.164265     am =  1.6076453019097    
 nu =  1.200     tauo =  1.164381     tau =  1.164381     am =  1.6076064046376    
 nu =  1.200     tauo =  1.164381     tau =  1.164497     am =  1.6075675133320    
 nu =  1.200     tauo =  1.164381     tau =  1.164614     am =  1.6075286279918    
 nu =  1.200     tauo =  1.164381     tau =  1.164730     am =  1.6074897486159    
 nu =  1.200     tauo =  1.164381     tau =  1.164847     am =  1.6074508752031    
 nu =  1.200     tauo =  1.164381     tau =  1.164963     am =  1.6074120077522    
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